京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从朴素贝叶斯分类器到贝叶斯网络
一、贝叶斯公式(一些必备的数学基础)
贝叶斯(Thomas Bayes)是生活在十八世纪的一名英国牧师和数学家。因为历史久远,加之他没有太多的著述留存,今天的人们对贝叶斯的研究所知甚少。唯一知道的是,他提出了概率论中的贝叶斯公式。但从他曾经当选英国皇家科学学会会员(类似于院士)来看,他的研究工作在当时的英国学术界已然受到了普遍的认可。
事实上,在很长一段时间里,人们都没有注意到贝叶斯公式所潜藏的巨大价值。直到二十世纪人工智能、机器学习等崭新学术领域的出现,人们才从一堆早已蒙灰的数学公式中发现了贝叶斯公式的巨大威力。为了方便后续内容的介绍,这里我们先来简单复习一下概率论中的一些基本知识。
事件A在另外一个事件B已经发生条件下的发生概率,称为条件概率,记为P(A|B)。
两个事件共同发生的概率称为联合概率。A与B的联合概率表示为 P(AB) 或者P(A,B)。
进而有,P(AB) = P(B)P(A|B)=P(A)=P(B|A)。这也就导出了最简单形式的贝叶斯公式,即
P(A|B)=P(B|A)*P(A)/P(B)
以及条件概率的链式法则
P(A1,A2,...,An) = P(An|A1,A2,...,An-1)P(An-1|A1,A2,...,An-2)...P(A2|A1)P(A1)
概率论中还有一个全概率公式
由此可进一步导出完整的贝叶斯公式
二、朴素贝叶斯分类器(Naïve Baysian classifier)
分类是机器学习和数据挖掘中最基础的一种工作。假设现在我们一组训练元组(Training tuples),或称训练样例,以及与之相对应的分类标签(Class labels)。每个元组都被表示成n维属性向量X=(x1, x2, ..., xn)的形式,而且一共有K个类,标签分别为C1, C2, ..., Ck。分类的目的是当给定一个元组X时,模型可以预测其应当归属于哪个类别。
朴素贝叶斯分类器的原理非常简单,就是基于贝叶斯公式进行推理,所以才叫做“朴素”。对于每一个类别Ci, 利用贝叶斯公式来估计在给定训练元组X时的条件概率p(Ci|X),即
P(Ci|X) = P(X|Ci)P(Ci)/P(X)
当且仅当概率P(Ci|X)在所有的P(Ck|X)中取值最大时,就认为X属于Ci。更进一步,因为P(X)对于所有的类别来说都是恒定的,所以其实只需要P(Ci|X) = P(X|Ci)P(Ci)最大化即可。
应用朴素贝叶斯分类器时必须满足条件:所有的属性都是条件独立的。也就是说,在给定条件的情况下,属性之间是没有依赖关系的。即
为了演示贝叶斯分类器,来看下面这个例子。我们通过是否头疼、咽痛、咳嗽以及体温高低来预测一个人是普通感冒还是流感。
上面是我们提供的训练数据。现在有一个病人到诊所看病,他的症状是:severeheadache, no soreness, normaltemperature and with cough。请问他患的是普通感冒还是流感?分析易知,这里的分类标签有Flu 和Cold两种。于是最终要计算的是下面哪个概率更高。
P( Flu| Headache = severe, Sore = no,Temperature = normal, Cough = yes)
≅P(Flu)*P(Headache= severe|Flu)*P(Sore= no|Flu)*P(Temperature= normal |Flu)*P(Cough = yes|Flu)
P( Cold| Headache = severe, Sore = no,Temperature = normal, Cough = yes)
≅P(Cold)*P(Headache= severe|Cold)*P(Sore= no|Cold)*P(Temperature= normal |Cold)*P(Cough = yes |Cold)
为了计算上面这个结果,我们需要通过已知数据(训练数据)让机器自己“学习”(建立)一个“模型”。由已知模型很容以得出下表中的结
以及
e= small value = 10^-7(one can use e to be less than 1/n where n is the number of training instances)
P( Flu| Headache = severe, Sore = no,Temperature = normal, Cough = yes)
= P(Flu)*P(Headache = severe|Flu)*P(Sore= no|Flu)*P(Temperature = normal |Flu)*P(Cough = yes|Flu)
= 3/5 × 2/3 × e × 2/3 × 3/3 = 0.26e
P( Cold| Headache = severe, Sore = no,Temperature = normal, Cough = yes)
~ P(Cold)*P(Headache =severe|Cold)*P(Sore = no|Cold)*P(Temperature = normal |Cold)*P(Cough = yes|Cold)
= 2/5 × e × ½ × 1 × ½ = 0.1e
显然P(Flu) > P(Cold),所以我们的诊断(预测,分类)结果是 Flu。
最后讨论一下朴素贝叶斯分类器的特点(来自网上资料总结,我就不翻译了):
我们将把贝叶斯网络留待下一篇文章中介绍(未完,待续...)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22