京公网安备 11010802034615号
经营许可证编号:京B2-20210330
使用R进行倾向得分匹配(PSM)
根据维基百科,倾向得分匹配(PSM)是一种用来评估处置效应的统计方法。广义说来,它将样本根据其特性分类,而不同类样本间的差异就可以看作处置效应的无偏估计。因此,PSM不仅仅是随机试验的一种替代方法,它也是流行病研究中进行样本比较的重要方法之一。让我们举个栗子:
与健康相关的生活质量(HRQOL)被认为是癌症治疗的重要结果之一。对癌症患者而言,最常用的HRQOL测度是通过欧洲癌症研究与治疗中心的调查问卷计算得出的。EORTC QLD-C30是一个由30个项目组成,包括5个功能量表,9个症状量表和一个全球生活质量量表的的问卷。所有量表都会给出一个0-100之间的得分。症状量表得分越高代表被调查人生活压力越大,其余两个量表得分越高代表生活质量越高。
然而,如果没有任何参照,直接对数据进行解释是很困难的。幸运的是,EORTC QLQ-C30问卷也在一些一般人群调查中使用,我们可以对比患者的得分和一般人群的得分差异,从而判断患者的负担症状和一些功能障碍是否能归因于癌症治疗。PSM在这里可以以年龄和性别等特征,将相似的患者和一般人群进行匹配。
生成两个随机数据框
由于我不希望在本文使用真实数据,我需要生成一些仿真数据。使用Wakefield包可以很容易地实现这个功能。
第一步,我们创建一个名为df.patients的数据框,我希望它包含250个病人的年龄和性别数据,所有病人的年龄都要在30-78岁之间,并且70%的病人被设定为男性。
set.seed(1234)
df.patients <- r_data_frame(n = 250,
age(x = 30:78,
name = 'Age'),
sex(x = c("Male", "Female"),
prob = c(0.70, 0.30),
name = "Sex"))
df.patients$Sample <- as.factor('Patients')
summary函数会返回创建的数据框的基本信息,如你所见,患者平均年龄为53.7岁,并且大约70%为男性。
summary(df.patients)
## Age Sex Sample
## Min. :30.00 Male :173 Patients:250
## 1st Qu.:42.00 Female: 77
## Median :54.00
## Mean :53.71
## 3rd Qu.:66.00
## Max. :78.00
第二步,我们需要创建另一个名为df.population的数据框。我希望这个数据集的数据和患者的有些不同,因此正常人群的年龄区间被设定为18-80岁,并且男女各占一半。
set.seed(1234)
df.population <- r_data_frame(n = 1000,
age(x = 18:80,
name = 'Age'),
sex(x = c("Male", "Female"),
prob = c(0.50, 0.50),
name = "Sex"))
df.population$Sample <- as.factor('Population')
下方表格显示样本平均年龄为49.5岁,男女比例也大致相等。
summary(df.population)
## Age Sex Sample
## Min. :18.00 Male :485 Population:1000
## 1st Qu.:34.00 Female:515
## Median :50.00
## Mean :49.46
## 3rd Qu.:65.00
## Max. :80.00
合并数据框
在匹配样本之前,我们需要把两个数据框合并。先生成一个新变量Group来代表观测来自哪个全体(逻辑型变量),再添加另一个变量Distress来反应个体的痛苦程度。Distress变量是利用Wakefield包中的age函数创建的,可以发现,女性承受的痛苦级别更高。
mydata <- rbind(df.patients, df.population)
mydata$Group <- as.logical(mydata$Sample == 'Patients')
mydata$Distress <- ifelsmydata <- rbind(df.patients, df.population)
mydata$Group <- as.logical(mydata$Sample == 'Patients')
mydata$Distress <- ifelse(mydata$Sex == 'Male', age(nrow(mydata), x = 0:42, name = 'Distress'),
age(nrow(mydata), x = 15:42, name = 'Distress'))
当我们比较两类样本的年龄和性别分布时,我们可以发现明显的区别:
pacman::p_load(tableone)
table1 <- CreateTableOne(vars = c('Age', 'Sex', 'Distress'),
data = mydata,
factorVars = 'Sex',
strata = 'Sample')
table1 <- print(table1,
printToggle = FALSE,
noSpaces = TRUE)
kable(table1[,1:3],
align = 'c',
caption = 'Table 1: Comparison of unmatched samples')
更进一步,我们还发现一般人群的痛苦程度显著较高。
样本匹配
现在,我们已经完成了全部的准备工作,可以开始使用MatchIT包中的matchit函数来匹配两类样本了。函数中method=‘nearest’的设定指明了使用近邻法进行匹配。其他方法包括,次分类,优化匹配等。ratio=1意味着这是一一配对。同时也请注意Group变量需要是逻辑型变量。
set.seed(1234)
match.it <- matchit(Group ~ Age + Sex, data = mydata, method="nearest", ratio=1)
a <- summary(match.it)
为了后续工作的便利,我们将summary函数的输出赋值给名为a的变量。
在匹配万样本后,一般人群样本量所见到了和患者样本一致(250个观测)。
kable(a$nn, digits = 2, align = 'c',
caption = 'Table 2: Sample sizes')
根据输出结果,匹配后的年龄和性别分布基本一致了。
kable(a$sum.matched[c(1,2,4)], digits = 2, align = 'c',
caption = 'Table 3: Summary of balance for matched data')
倾向得分的分布可以使用MatchIt包中的plot函数进行绘制。
plot(match.it, type = 'jitter', interactive = FALSE)
输出如下:
保存匹配样本
最后,让我们把匹配好的样本保存在df.match数据框里。
df.match <- match.data(match.it)[1:ncol(mydata)]
rm(df.patients, df.population)
现在pacman::p_load(tableone)
table4 <- CreateTableOne(vars = c('Age', 'Sex', 'Distress'),
data = df.match,
factorVars = 'Sex',
strata = 'Sample')
table4 <- print(table4,
printToggle = FALSE,
noSpaces = TRUE)
kable(table4[,1:3],
align = 'c',
caption = 'Table 4: Comparison of matched samples'),我们可以对比两类人群间痛苦程度的差异是否依旧显著。
由于p值为0.222,学生t检验的结果不再显著。因此,PSM帮助我们避免犯下第一类错误。
P.S.1:本文只用的所有包可通过如下代码加载:数据分析师培训
pacman::p_load(knitr, wakefield, MatchIt, tableone, captioner)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23