京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者: 俊欣
来源:关于数据分析与可视化
对于机器学习爱好者而言,很多时候我们需要将建好的模型部署在线上,实现前后端的交互,今天小编就通过Flask以及Streamlit这两个框架实现机器学习模型的前后端交互。
首先是模型的建立,小编这回为了省事儿建立一个非常简单的二分法模型,所引用的数据集如下所示
import pandas as pd
df = pd.read_csv("data.csv")
df.head()
output
Height Weight Species 0 88.9 48.3 Dog 1 90.2 47.4 Dog 2 82.7 44.8 Dog 3 81.4 48.2 Dog 4 83.5 39.9 Dog
所涉及到的特征也就两列分别是“Hight”以及“Weight”也就是身高和体重,我们需要通过这两个特征来预测它到底是“猫”还是“狗”,代码如下
X = df[["Height", "Weight"]] y = df["Species"]
clf = GaussianNB()
clf.fit(X, y)
当然小编为了省事儿这里并没有进行训练集和测试集的区分,也没有进行任何的调参以及模型的优化,只是简单的建立了一个朴素贝叶斯的二分类模型。接下来我们将建立好的模型保存下来
import joblib
joblib.dump(clf, "clf.pkl")
前端页面主要是由一系列的HTML代码写成的,代码如下
<!DOCTYPE html> <html> <head> <title>Your Machine Learning App</title> </head> <body> <form name="form", method="POST", style="text-align: center;"> <br> Height: <input type="number" name="height", placeholder="Enter height in cm" required/> <br><br> Weight: <input type="number" name="weight", placeholder="Enter weight in kg" required/> <br><br> <button value="Submit">Run</button> </form> <p style="text-align: center;">{{ output }}</p> </body> </html>
输出结果如下:
我们可以看到有两个输入框分别代表的是身高与体重,以及运行的按钮键。接下来我们来写后端的逻辑代码,当前端传过来数据的时候,也就是身高与体重的数据的时候,后端的代码来调用已经训练好的模型并且做出预测,然后显示在前端的页面上。在Flask框架中后端的业务代码大致如下
from flask import Flask, request, render_template import pandas as pd import joblib # 声明是一个Flask应用 app = Flask(__name__) # 主要业务逻辑 # ------------------ # 运行整体的应用 if __name__ == '__main__':
app.run(debug = True)
那么在本篇文章的项目背景下,代码如下
@app.route('/', methods=['GET', 'POST']) def main(): # 表单数据提交,POST请求 if request.method == "POST": # 调用已经训练好的模型 clf = joblib.load("clf.pkl") # 从输入框中获取身高与体重数据 height = request.form.get("height")
weight = request.form.get("weight") # 转变成DataFrame格式 X = pd.DataFrame([[height, weight]], columns = ["Height", "Weight"]) # 获取预测值 prediction = clf.predict(X)[0] else: prediction = "" return render_template("website.html", output = prediction)
然后我们运行整个脚本,效果如下
我们试着输入一些身高与体重的值,看一下返回的结果,效果如下
下面我们来看一下将模型部署在Streamlit框架下该如何来操作。在Streamlit框架中没有特别明显的前后端代码的分离,代码如下
import streamlit as st import pandas as pd import joblib # 标题 st.header("Streamlit Machine Learning App") # 输入框 height = st.number_input("Enter Height")
weight = st.number_input("Enter Weight") # 点击提交按钮 if st.button("Submit"): # 引入训练好的模型 clf = joblib.load("clf.pkl") # 转换成DataFrame格式的数据 X = pd.DataFrame([[height, weight]],
columns=["Height", "Weight"]) # 获取预测出来的值 prediction = clf.predict(X)[0] # 返回预测的值 st.text(f"This instance is a {prediction}")
最后生成的页面如下
我们在终端中运行以下命令
streamlit run streamlit_model.py
最后我尝试在输入框中填入一些虚构的数字,看一下出来的结果是什么样的,如下
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12