
作者:小伍哥
来源:小伍哥聊风控
今天放假了回家过年了,分享两个看异常分布的图,很好看,也很实用。不会用或者不会画的,随时私聊我。毕竟现在过年也没啥事。
一、箱线图
箱盒图(也称盒图,箱线图等)是在1977年由美国统计学家John Tukey发明,分析数据需要为定量数据。通过箱盒图,可以直观的探索数据特征。
箱盒图共有两个用途:1)直观地识别数据中异常值(离群点);2)直观地判断数据离散分布情况,了解数据分布状态。
箱盒图共由五个数值点构成,下边缘,25%分位数(Q1),中位数,75%分位数(Q3),上边缘。其中:
1)中横线 = 中位数
2)下边缘 = Q1 – 1.5 IQR 其中:IQR=75%分位数(Q3)-25%分位数(Q1)
3)上边缘 = Q3 + 1.5 IQR
特别说明:箱盒图里面的上边缘值并非最大值,下边缘值也不是最小值。
如果数据有存在离群点即异常值,他们超出最大或者最小观察值,此时将离群点以“圆点”形式进行展示。
#安装与加载包install.packages('ggplot2') library(ggplot2)#抽样部分数据 dsmall = diamonds[sample(nrow(diamonds),5000),]#比较基础的图形 ggplot(dsmall,aes(x=color,y=price,fill=color))+
geom_boxplot()+
scale_fill_manual(values=c('blue','cyan', 'yellow', 'orange', 'red', 'Cyan1', 'DeepPink1'))+
facet_grid(.~clarity )
ggplot(mpg,aes(x=trans,y=displ,fill=trans))+theme_bw()
+geom_boxplot()+theme(plot.title =element_text(size=20,face="bold",
color="red", hjust=0.5,vjust=0.5,lineheight=0.01,family="myFont"),
#axis.title.x=element_text(size=12,face="bold",color="black",hjust=0.5),
axis.title.y=element_text(size=12,face="bold",color="black",hjust=0.5),
#axis.text.x =element_text(size=08,face="plain",color="black",angle=90,vjust=0.5,lineheight=0.01,family="myFont"),
axis.text.y =element_text(size=08,face="plain",color="black",family="myFont"),
panel.grid=element_blank(),
panel.background = element_blank(), legend.position='none')
业务中的一些图,不同类目的商品价格,不同城市的消费水平等等,基本上能够一目了然的发现问题。是一个既实用又装逼的图,大家可以试试。
二、密度图
qplot(carat,data = dsmall,geom = c('density'),
fill = cut,colour = cut)
qplot(depth,data = dsmall,geom = c('density'),fill = cut,
colour = cut,alpha = I(2/10))
qplot(depth,data = dsmall,geom = c('density'),
fill = cut,colour = cut,alpha = I(2/10))
业务中的一些数据对比,为黑白样本同一个特征的分布对比,可以看到有比较大的不同
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25