
作者:俊欣
来源:关于数据分析与可视化
大家好,我是俊欣,今天给大家介绍3个特别好用的Python模块,知道的人可能不多,但是特别的好用。
Python当中的Psutil模块是个跨平台库,它能够轻松获取系统运行的进程和系统利用率,包括CPU、内存、磁盘、网络等信息,它的安装也非常的简单,命令行
pip install psutil
这里因为整体的篇幅有限,小编就暂时只罗列几个常用的方法,例如我们想要查看一下CPU的利用率
psutil.cpu_percent()
返回的结果表示的是当前系统范围的CPU利用率百分比,如果我们要查看系统中CPU的个数,代码如下
## 逻辑CPU的个数 psutil.cpu_count() ## 物理CPU的个数 psutil.cpu_count(logical=False)
又或者我们想要查看一下系统中的物理内存,代码如下
## 剩余的物理内存 free = str(round(psutil.virtual_memory().free / (1024.0 * 1024.0 * 1024.0), 2)) ## 物理内存总共有 total = str(round(psutil.virtual_memory().total / (1024.0 * 1024.0 * 1024.0), 2))
而如果我们想要查看单个磁盘的信息,就直接调用disk_usage()方法
print(psutil.disk_usage('C:'))
而去获取所有磁盘的信息,调用的则是disk_partitions()方法
print(psutil.disk_partitions())
另外我们也还能够获取到系统的启动时间
from datetime import datetime
print(u"系统启动时间: %s" % datetime.fromtimestamp(psutil.boot_time()).strftime("%Y-%m-%d %H:%M:%S"))
一般我们都是用datatime模块来处理日期、时间等数据,但是不得不说在于datatime模块也有自身的一些限制,例如在处理时区时就会显得有些不足,这次我们来介绍一下Pendulum模块
首先我们用pip命令行来进行安装
pip install pendulum
pendulum模块最令人印象深刻的功能是时区,例如我们想要知道“巴黎”此时的时间,可以这么来做
now_in_paris = pendulum.now('Europe/Paris') print(now_in_paris)
output
2022-01-22T14:59:06.484816+01:00
还可以知道当天的日期
d1 = pendulum.yesterday() # 昨天 d2 = pendulum.today() # 今天 d3 = pendulum.tomorrow() # 明天
output
2022-01-21T00:00:00+08:00 # 昨天的日期
2022-01-22T00:00:00+08:00 # 今天
2022-01-23T00:00:00+08:00 # 明天
我们还可以在时间的数据上进行加、减,调用的是add和subtract方法
dt = pendulum.datetime(2022, 1, 22) dt_years_add = dt.add(years=5) print(dt_years_add) dt_years_subtract = dt.subtract(years=1) print(dt_years_subtract) dt_month_add = dt.add(months=60) print(dt_month_add) dt_month_subtract = dt.subtract(months=60) print(dt_month_subtract)
output
2027-01-22T00:00:00+00:00 2021-01-22T00:00:00+00:00 2027-01-22T00:00:00+00:00 2017-01-22T00:00:00+00:00
要是我们希望将时间数据转换成字符串,就可以这么来做,代码如下
dt = pendulum.datetime(2022, 1, 23, 15, 16, 10)
要是我们需要的是前缀的日期字符串,则可以这么来做
dt.to_date_string()
output
2022-01-23
而要是我们需要的是后缀的时间字符串,则可以这么来做
dt.to_time_string()
output
15:16:10
当然我们有时候日期和时间都需要,代码如下
dt.to_datetime_string()
output
2022-01-23 15:16:10
或者是
dt.to_day_datetime_string()
output
Sun, Jan 23, 2022 3:16 PM
当然该模块还有其他很多强大的功能,具体的大家可以去看它的文档,最后我们要说的是其人性化时间的输出功能。
如果我们平时用搜素引擎的话,就会看到有很多内容的时间被标成了“1天前”、“1周后”等等,这个在pendulum模块当中也能够轻而易举的实现
print(pendulum.now().subtract(days=1).diff_for_humans()) ## '1 day ago' print(pendulum.now().diff_for_humans(pendulum.now().subtract(years=1))) ## '1 year after' print(pendulum.now().subtract(days=24).diff_for_humans()) ## '3 weeks ago'
可能有些人要是英文看不懂的话,我们也可以切换到中文,如下
print(pendulum.now().subtract(days=14).diff_for_humans()) ## '2周前' print(pendulum.now().add(seconds=5).diff_for_humans()) ## '5秒钟后'
pyfiglet是一个专门用来生成艺术字的模块,并且支持有多种艺术字的字体,我们来看一下下面这个例子
result = pyfiglet.figlet_format("Python", font="larry3d") print(result)
output
____ __ __
/ _` / __/
L __ __ ,_ ___ ___ ___
,__/ / / _ ` / __` /' _ ` / _ _ / L / / _ /`____ __ _ _ ____/ _ _ /_/ `/___/> /__/ /_//_//___/ /_//_/ /___/ /__/
要是大家不喜欢上面的字体,可以通过下面的代码
pyfiglet.FigletFont.getFonts()
在输出的所有字体当中任选一个来进行艺术字的塑造
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25