
作者:俊欣
来源:关于数据分析与可视化
今天小编打算稍微中规中矩一些,写一篇技术类的干货文章。
这篇文章小编来讲讲lambda方法以及它在pandas模块当中的运用,熟练掌握可以极大地提高数据分析与挖掘的效率
我们第一步需要导入模块以及数据集
import pandas as pd
df = pd.read_csv("IMDB-Movie-Data.csv")
df.head()
一般我们是通过在现有两列的基础上进行一些简单的数学运算来创建新的一列,例如
df['AvgRating'] = (df['Rating'] + df['Metascore']/10)/2
但是如果要新创建的列是经过相当复杂的计算得来的,那么lambda方法就很多必要被运用到了,我们先来定义一个函数方法
def custom_rating(genre,rating): if 'Thriller' in genre: return min(10,rating+1) elif 'Comedy' in genre: return max(0,rating-1) elif 'Drama' in genre: return max(5, rating-1) else: return rating
我们对于不同类别的电影采用了不同方式的评分方法,例如对于“惊悚片”,评分的方法则是在“原来的评分+1”和10分当中取一个最小的,而对于“喜剧”类别的电影,则是在0分和“原来的评分-1”当中取一个最大的,然后我们通过apply方法和lambda方法将这个自定义的函数应用在这个DataFrame数据集当中
df["CustomRating"] = df.apply(lambda x: custom_rating(x['Genre'], x['Rating']), axis = 1)
我们这里需要说明一下axis参数的作用,其中axis=1代表跨列而axis=0代表跨行,如下图所示
在pandas当中筛选数据相对来说比较容易,可以用到& | ~这些操作符,代码如下
# 单个条件,评分大于5分的 df_gt_5 = df[df['Rating']>5] # 多个条件: AND - 同时满足评分高于5分并且投票大于100000的 And_df = df[(df['Rating']>5) & (df['Votes']>100000)] # 多个条件: OR - 满足评分高于5分或者投票大于100000的 Or_df = df[(df['Rating']>5) | (df['Votes']>100000)] # 多个条件:NOT - 将满足评分高于5分或者投票大于100000的数据排除掉 Not_df = df[~((df['Rating']>5) | (df['Votes']>100000))]
这些都是非常简单并且是常见的例子,但是要是我们想要筛选出电影的影名长度大于5的部分,要是也采用上面的方式就会报错
df[len(df['Title'].split(" "))>=5]
output
AttributeError: 'Series' object has no attribute 'split'
这里我们还是采用apply和lambda相结合,来实现上面的功能
#创建一个新的列来存储每一影片名的长度 df['num_words_title'] = df.apply(lambda x : len(x['Title'].split(" ")),axis=1) #筛选出影片名长度大于5的部分 new_df = df[df['num_words_title']>=5]
当然要是大家觉得上面的方法有点繁琐的话,也可以一步到位
new_df = df[df.apply(lambda x : len(x['Title'].split(" "))>=5,axis=1)]
例如我们想要筛选出那些影片的票房低于当年平均水平的数据,可以这么来做。
我们先要对每年票房的的平均值做一个归总,代码如下
year_revenue_dict = df.groupby(['Year']).agg({'Revenue(Millions)':np.mean}).to_dict()['Revenue(Millions)']
然后我们定义一个函数来判断是否存在该影片的票房低于当年平均水平的情况,返回的是布尔值
def bool_provider(revenue, year): return revenue
然后我们通过结合apply方法和lambda方法应用到数据集当中去
new_df = df[df.apply(lambda x : bool_provider(x['Revenue(Millions)'],
x['Year']),axis=1)]
我们筛选数据的时候,主要是用.loc方法,它同时也可以和lambda方法联用,例如我们想要筛选出评分在5-8分之间的电影以及它们的票房,代码如下
df.loc[lambda x: (x["Rating"] > 5) & (x["Rating"] < 8)][["Title", "Revenue (Millions)"]]
转变指定列的数据类型
通常我们转变指定列的数据类型,都是调用astype方法来实现的,例如我们将“Price”这一列的数据类型转变成整型的数据,代码如下
df['Price'].astype('int')
会出现如下所示的报错信息
ValueError: invalid literal for int() with base 10: '12,000'
因此当出现类似“12,000”的数据的时候,调用astype方法实现数据类型转换就会报错,因此我们还需要将到apply和lambda结合进行数据的清洗,代码如下
df['Price'] = df.apply(lambda x: int(x['Price'].replace(',', '')),axis=1)
方法调用过程的可视化
有时候我们在处理数据集比较大的时候,调用函数方法需要比较长的时间,这个时候就需要有一个要是有一个进度条,时时刻刻向我们展示数据处理的进度,就会直观很多了。
这里用到的是tqdm模块,我们将其导入进来
from tqdm import tqdm, tqdm_notebook
tqdm_notebook().pandas()
然后将apply方法替换成progress_apply即可,代码如下
df["CustomRating"] = df.progress_apply(lambda x: custom_rating(x['Genre'],x['Rating']),axis=1)
output
当lambda方法遇到if-else
当然我们也可以将if-else运用在lambda自定义函数当中,代码如下
Bigger = lambda x, y : x if(x > y) else y
Bigger(2, 10)
output
10
当然很多时候我们可能有多组if-else,这样写起来就有点麻烦了,代码如下
df['Rating'].apply(lambda x:"低分电影" if x < 3 else ("中等电影" if x>=3 and x < 5 else("高分电影" if x>=8 else "值得观看")))
看上去稍微有点凌乱了,这个时候,小编这里到还是推荐大家自定义函数,然后通过apply和lambda方法搭配使用
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认证 ...
2025-07-09CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01