
来源:Python爬虫与数据挖掘
作者: Python进阶者
大家好,我是Python进阶者。
前言
我们在进行Python编程的时候,时常要将一些数据保存起来,其中最方便的莫过于保存在文本文件了。但是如果保存的文件太大,用文本文件就不太现实了,毕竟打开都是个问题,这个时候我们需要用到数据库。提到数据库,相信大部分人都不会陌生,今天我们要学的就是数据库中小编自认为最棒的Mysql数据库了。
为了让Python与Mysql 交互,这里我们需要用到Pymsql模块才行。
下载模块:
pip install pymysql
导入模块:
import pymysql
打开数据库连接软件 SqlYong,如图:
输入命令:
CREATE DATABASE IF NOT EXISTS people;
这样就创建了一个people 数据库。
USE people; CREATE TABLE IF NOT EXISTS student(id INT PRIMARY KEY AUTO_INCREMENT,NAME CHAR(10) UNIQUE,score INT NOT NULL,tim DATETIME)ENGINE=INNOBASE CHARSET utf8; INSERT INTO student(NAME,score,tim)VALUES('fasd',60,'2020-06-01') SELECT * FROM student;
通过上述操作便创建了一个数据表Student并向其中写入了数据,结果如下:
我们可以一行代码删除这个插入的 数据:
TRUNCATE student;
将下图中的参数依次填入初始化参数中,
db=pymysql.connect(host='localhost',user='root',password='123456',port=3306,db='people')
这样就连接到了people数据库,可以看下连接成功的打印信息:
可以看到我们打印了Mysql的版本和Host信息。
1.创建游标
cur=db.cursor
2.编写插入数据表达式
sql="INSERT INTO student(NAME,score,tim)VALUES('任性的90后boy',100,now())"
3.开启游标事件
cur.begin()
4.执行数据库语句,异常判断
try:
cur.execute(sql) 执行数据库语句
except Exception as e: print(e)
db.rollback() 发生异常进行游标回滚操作 else:
db.commit() 提交数据库操作 finally:
cur.close() 关闭游标
db.close() 关闭数据库
5,执行插入操作
数据库建立好后,我们可以对它们进行插入数据的操作。
import time
db=pymysql.connect(host='localhost',user='root',password='123456',port=3306,db='people')
cur=db.cursor()
db.begin()
sql="INSERT INTO student(NAME,score,tim) VALUES ('%s',%d,'%s')" data=('HW',90,tt) try:
cur.execute(sql%data)
except Exception as e:
print(e)
db.rollback() else:
db.commit() finally:
cur.close()
db.close()
这样就可以将数据插入进去了。我们还可以自定义插入:
import pymysql
import time tt=time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))
db=pymysql.connect(host='localhost',user='root',password='123456',port=3306,db='people')
cur=db.cursor()
db.begin()
s=input('string:')
d=input('number:')
sql="INSERT INTO student(NAME,score,tim)VALUES('%s','%s','%s')" try:
data=(s,d,tt)
cur.execute(sql%data)
except Exception as e: print(e)
db.rollback() else:
db.commit()
finally:
cur.close()
db.close()
另外,我们也可以同时插入多条数据,只需先定义好所有的数据,然后在调用即可,这里需要用到插入多条数据的函数Executemany,在这里我插入十万条数据,并测试插入时间,步骤如下:
import pymysql
import time start=time.time()
tt=time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))
db=pymysql.connect(host='localhost',user='root',password='123456',port=3306,db='people')
cur=db.cursor()
db.begin() sql="insert into student(NAME,score,tim)values(%s,%s,%s)" def get():
ab=[] for y in range(1,100000): if y>=100: data=('user-'+str(y),str(str(float('%.f'%(y%100)))),tt) else: data=('user-'+str(y),str(y),tt)
ab.append(data) return ab
try: data=get()
cur.executemany(sql,data) except Exception as e:
print(e)
db.rollback() else:
db.commit()
finally:
print('插入数据完毕')
cur.close()
db.close() end=time.time()
print('用时:',str(end-start))
6.执行更新操作
有些数据我们觉得它过时了,想更改,就要更新它的数据。
import time
db=pymysql.connect(host='localhost',user='root',password='123456',port=3306,db='people')
cur=db.cursor()
db.begin()
sql="update student set name='zjj' where score=100 " 当分数是100分的时候将名字改为zjj try:
cur.execute(sql%data) except Exception as e:
print(e)
db.rollback() else:
db.commit() finally:
cur.close()
db.close()
7.执行删除操作
有时候一些数据如果对于我们来说没有任何作用了的话了,我们就可以将它删除了,不过这里是删除数据表中的一条记录。
import pymysql
db=pymysql.connect(host='localhost',user='root',password='123456',port=3306,db='people')
cur=db.cursor()
db.begin()
sql="delete from student where name='fasd';" 当名字等于‘fasd’的时候删除这个记录 try:
cur.execute(sql) except Exception as e:
print(e)
db.rollback() else:
db.commit() finally:
cur.close()
db.close()
你也可以删除表中所有的数据,只需将Sql语句改为:
sql='TRUNCATE student;'
当然你也可以删除表,但是一般不建议这样做,以免误删:
DROP TABLE IF EXISTS student;
8.执行查询操作
有时候我们需要对数据库中的数据进行查询,Python也能轻松帮我们搞定。
import pymysql
import time tt=time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))
db=pymysql.connect(host='localhost',user='root',password='123456',port=3306,db='people')
cur=db.cursor()
db.begin()
sql="select * from student;" try:
cur.execute(sql)
res=cur.fetchall() 查询数据库中的数据 for y in res: print(y) 打印数据库中标的所有数据,以元祖的形式
except Exception as e: print(e)
db.rollback() else:
db.commit()
finally:
cur.close()
db.close()
在我们进行网络爬虫的时候,需要保存大量数据,这个时候数据库就派上用场了,可以更方便而且更快捷保存数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02