京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据处理_大数据处理技术
每个企业或多或少每天都会需要做一个数据统计,来掌握公司的运营情况,看看自己的客户每天是否有增加等等,当客户的数据信息达到一定的程度,单独的使用一台计算机进行计算肯定不行,因此就会需要多台机器同时处理。现在有很多流行的分布式系统,架构设计的很复杂,考虑了各种容错性,协作性,任务分配性等,但是要快速的掌握和部署到实际的机器上还是很困难的。为此,提出一个简单、有效并能根据实际情况灵活开发的大数据处理的架构。
假设条件:
(1)要处理的数据分布在其他的数据记录机上,比如有w1~w12台机器,每台机器收集到数据量相差不大。
(2)现有三台机器stat1~stat3(3台机器的性能和配置相差不大)可供使用的数据统计机器,用来从w1~w12这12台机器上收集数据,并进行处理,得到用户的信息。
(3)如果要统计的数据必须要将w1~w12台机器上的数据全部取回来,并做数据消重,比如说要按照IP消重。如果不需要消重,那么就没有必要将所有的数据都合并在一起,可以分别计算后再求和。
首先: 我们查看w1~w12这12台机器上数据文件大小,并按照从大到小的顺序将数据文件排列,将最大的数据文件分给给stat1,次大的分配给stat2,第三大的分配给stat3,将第四大的分配给stat3,第五大的分配给stat2,第六大的分配给stat1,第七大的分配给stat1,第八大的分配给stat2,等等如此反复,这样stat1~stat3每台机器上对应的数据文件大小就差不多了。如果觉得w1~w12每台机器上的数据文件相差不大,那么就可以按照就近原则,将w1~w4分配给stat1,w5~w8分配给stat2,w9~w12分配给stat3进行处理。
确定每台数据统计机器要处理那些数据后,就可以在每台机器上写一个定时任务,可以同时在每日凌晨的某个时间点,每个stat机器去相应的w机器上去抓取数据,并进行分析。如果要对特定的字段比如IP需要做全局去重(w1~w12),那么我们可以采用简单的方法,将IP做个MD5转换,取MD5的第一个字母做为分割线,把IP分到16个不同的文件中,比如ip1~ip16,这样stat1~stat16每台机器上都会产生16个ip文件。每台stat机器处理完成后,生成一个done文件,表示其任务已经结束。然后处于等待阶段
从stat1~stat3这三台机器中选中一台机器作为master,当其完成抓取数据,将ip分配到16个IP文件中,并生成done文件后,去其他两台stat机器上抓取done文件,如果三台机器的done文件都存在了,那么master就将每台机器上的ip1~ip5文件都拷贝到stat1这台机器上,将ip6~ip10拷贝到stat2这台机器上,其ip11~ip16拷贝到stat3上,master拷贝任务完成后,分别在三台机器上生成一个done1文件,表示分配任务完成。
stat1~stat3的机器在等待过程中,一旦发现有done1文件存在,就分别对分配给自己的ip文件进行处理,比如stat1就会先处理分配给自己的三个ip1进行排序去重得到一个数据,然后对分配给自己的三个ip2文件进行排序去重得到一个数据,如此反复得到5个数据,stat1可以将这5个数据记录到数据库中; stat2和stat3重复stat1的过程,分别得到5和6个数据,也同时放到同一个数据库中,这样,每天就会得到16个数据,我们将这16个数据在数据库中求和,就得到了w1~w12这12台机器上总的去重后的IP数。至此整个过程完成。
在整个过程,任何一个地方都可以设置出错判断,一旦出错可以重复几次该,比如说抓取数据文件,考虑到可能会因为网络原因,导致数据文件抓取不过来,因此可以sleep 10分钟后再去抓取,如果尝试4次都失败,就可以发送报警邮件或者报警短信通知维护人员。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11