
大数据处理_大数据处理技术
每个企业或多或少每天都会需要做一个数据统计,来掌握公司的运营情况,看看自己的客户每天是否有增加等等,当客户的数据信息达到一定的程度,单独的使用一台计算机进行计算肯定不行,因此就会需要多台机器同时处理。现在有很多流行的分布式系统,架构设计的很复杂,考虑了各种容错性,协作性,任务分配性等,但是要快速的掌握和部署到实际的机器上还是很困难的。为此,提出一个简单、有效并能根据实际情况灵活开发的大数据处理的架构。
假设条件:
(1)要处理的数据分布在其他的数据记录机上,比如有w1~w12台机器,每台机器收集到数据量相差不大。
(2)现有三台机器stat1~stat3(3台机器的性能和配置相差不大)可供使用的数据统计机器,用来从w1~w12这12台机器上收集数据,并进行处理,得到用户的信息。
(3)如果要统计的数据必须要将w1~w12台机器上的数据全部取回来,并做数据消重,比如说要按照IP消重。如果不需要消重,那么就没有必要将所有的数据都合并在一起,可以分别计算后再求和。
首先: 我们查看w1~w12这12台机器上数据文件大小,并按照从大到小的顺序将数据文件排列,将最大的数据文件分给给stat1,次大的分配给stat2,第三大的分配给stat3,将第四大的分配给stat3,第五大的分配给stat2,第六大的分配给stat1,第七大的分配给stat1,第八大的分配给stat2,等等如此反复,这样stat1~stat3每台机器上对应的数据文件大小就差不多了。如果觉得w1~w12每台机器上的数据文件相差不大,那么就可以按照就近原则,将w1~w4分配给stat1,w5~w8分配给stat2,w9~w12分配给stat3进行处理。
确定每台数据统计机器要处理那些数据后,就可以在每台机器上写一个定时任务,可以同时在每日凌晨的某个时间点,每个stat机器去相应的w机器上去抓取数据,并进行分析。如果要对特定的字段比如IP需要做全局去重(w1~w12),那么我们可以采用简单的方法,将IP做个MD5转换,取MD5的第一个字母做为分割线,把IP分到16个不同的文件中,比如ip1~ip16,这样stat1~stat16每台机器上都会产生16个ip文件。每台stat机器处理完成后,生成一个done文件,表示其任务已经结束。然后处于等待阶段
从stat1~stat3这三台机器中选中一台机器作为master,当其完成抓取数据,将ip分配到16个IP文件中,并生成done文件后,去其他两台stat机器上抓取done文件,如果三台机器的done文件都存在了,那么master就将每台机器上的ip1~ip5文件都拷贝到stat1这台机器上,将ip6~ip10拷贝到stat2这台机器上,其ip11~ip16拷贝到stat3上,master拷贝任务完成后,分别在三台机器上生成一个done1文件,表示分配任务完成。
stat1~stat3的机器在等待过程中,一旦发现有done1文件存在,就分别对分配给自己的ip文件进行处理,比如stat1就会先处理分配给自己的三个ip1进行排序去重得到一个数据,然后对分配给自己的三个ip2文件进行排序去重得到一个数据,如此反复得到5个数据,stat1可以将这5个数据记录到数据库中; stat2和stat3重复stat1的过程,分别得到5和6个数据,也同时放到同一个数据库中,这样,每天就会得到16个数据,我们将这16个数据在数据库中求和,就得到了w1~w12这12台机器上总的去重后的IP数。至此整个过程完成。
在整个过程,任何一个地方都可以设置出错判断,一旦出错可以重复几次该,比如说抓取数据文件,考虑到可能会因为网络原因,导致数据文件抓取不过来,因此可以sleep 10分钟后再去抓取,如果尝试4次都失败,就可以发送报警邮件或者报警短信通知维护人员。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13