京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析的好习惯
良好的数据习惯,助力数据分析,也让我们养成一个系统的数据分析思维。文章按数据分析的步骤进行讲解数据分析需要养成的良好习惯。文章第一点告诉我们,数据拿到手不忙着直接分析,先对数据的基本特征,以及数据分布有一定了解,后期的建模才有的放矢;文章第二点指出,没有经过验证的数据分析不是完整的分析,模型验证也是分析的一大步骤;文章最后指出,学会讲解你数据分析的结果,不然做得再好,难以被人知晓。详情,请大家自行阅读咯。
1. 分析数据前,一定要尽可能多的进行数据可视化!可视化!可视化!做exploratory data analysis
我上过的几乎所有的应用性的统计课程上的老师都会强调这一点。这个习惯对于数据科学家、统计学家来说估计是最最实用的。
在实际的数据分析过程中,数据可视化可以揭示很多insights:从选择什么样的模型,选择哪些feature建模,到如何分析结果,解释结果等等。
给一个很著名的例子, Anscombe's quartet (安斯库姆四重奏):这个例子包含四组数据。每组数据有11个(x, y)数据样本点。
四组数据样本里x的均值方差全相等,y的均值方差基本相等,x与y的相关系数也很接近。
导致的结果是,四组数据线性回归的结果基本一样。但是,这四组数据本身差别很大。如下图。
如果不做可视化,简单跑一个线性回归,我们只能得到同样的回归线。
数据可视化后,很直观的,左上图是传统的线性回归;右上图需要high-order nonlinear term;左下图x和y是线性关系,但是有outlier;右下图x和y没有线性关系,也有outlier, etc.
每一个数据科学家都应该熟悉各种图的画法,更重要的是,不同的图如何反映不同的信息以及面对不同的数据类型时,应该选择哪种图才能最好的揭示数据里蕴含的信息。
为此,强烈推荐关于R里ggplot包的教程:ggplot2 - Elegant Graphics for Data Analysis
当然另一方面,如果数据量太大维度太高,数据可视化做起来就比较困难。这时候就需要一些经验技巧了。
2. 跑完程序得到模型结果时,一定提醒自己:任务只完成50%,分析,验证,解释结果才是根本
很多时候,我们以为写完code跑完程序就完事了。能做到这一步只能算是一个合格的data analyst。这离数据科学家,统计学家还差远了。
分析,验证,解释结果才是根本! 这个过程更需要data sense, domain knowledge, and statistical expertise.
在拿到结果的时候,一定要多问自己为什么。
模型assumptions是否满足?结果是否make sense?能否解答research question?
特别当结果不符合expectation时,要么有新发现,要么有错误!如果有错,错在哪里?
如果模型假设不成立,如何修正?是否有outliers,如何处理?
或有missing values,missing的机制是啥样的(missing at random, completely at random, or NOT at random)?
是否有multicollinearity?
数据收集是否有bias (如selection bias)?
建模是否忽略了confounding factors (Simpson's paradox)?
3. 养成story-telling的习惯
把分析结果跟你的boss或者collaborator讲!务必让他们明白!这个太需要技巧了, 特别是当你的collaborator是layperson的时候。
不会说只能等着被虐,哪怕analysis做的再好!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23