京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据价值的4种常见定位
在日常工作中和数据产出中,数据价值的定位分为4种:数据管理、数据日常报表、数据专项挖掘分析、数据驱动。几乎所有企业的数据价值定位都脱离不了这4种,差异只是不同定位间的权重不同而已。

1.数据管理
数据管理工作包括:数据配置管理、数据权限管理、用户权限管理、数据导入管理、数据导出管理。
数据配置管理。数据存储、安全、排除设置,并发控制、进程控制、结构控制等。
数据权限管理。数据保存、新增、删除、更新、备份、合并、拆分、导出、打印等。
用户权限管理。用户新增、删除、重置、过期设置、共享等。
数据导入管理。数据导入格式、时间、条件、规则、异常处理、记录数、来源等。
数据导出管理。数据导出格式、时间、条件、规则、记录数、加密、位置等。
2.数据日常报表
大多数的数据日常报表需要通过技术开发形成报表产品体系,以提供对日常业务的支持。当具有突发性事件或活动时,需要人工整理和汇总报表。完成日常报表后,通过自动发送邮件或短信、在线访问、离线客户端访问等形成接入数据。
根据数据日常报表提供频率和周期的不同,报表可分为日报、周报、月报、季报、半年报和年报。报表的内容因公司需求而异,但基本框架是统计周期内企业各个运营环节KPI陈列、对比和简单分析,目的是通过周期性数据进行业务诊断,发现业务效果的趋势和异常点,为业务的优化执行提供基本支持。
根据数据日常报表支持对象在企业内部分工的不同,日常报表可分为针对决策层的报表和针对执行层的报表。针对决策层的报表侧重于宏观的、整体的效果汇总和结果把脉,借助对比、趋势和主要维度下钻等方式进行初步分析并定位结论和问题点;针对执行层的报表侧重于微观的、个体的效果分析,各业务执行层只针对各自业务维度进行分析,并提供实际可行的操作型建议。
对于数据指标的设定,既要包括公司核心结果指标如利润,又要包括各个业务节点的过程类或间接辅助类指标,以便更全面地评估和定性整体及各业务线的工作结果。
3.数据专项挖掘分析
数据专项挖掘分析是指针对某一特定课题或需求,采用专项分析或长期课题分析的形式对数据进行深入挖掘和分析,以提炼出相应结果或方法论供业务参考或使用。
数据专项挖掘分析是数据发挥价值的重要手段,更是数据辅助支持作用的关键,大多数公司的数据工作意义都来源于此。
为了提高数据工作的针对性,数据专项挖掘通常按业务模块划分,常见的数据专项挖掘分析模块包括市场分析、营销分析、网站分析(运营分析)、会员分析、用户体验分析、销售分析、移动分析、O2O分析等。不同分析模块课题依业务需求而定。
4.数据驱动
数据驱动是真正让数据从辅助角色转变为决定角色的唯一方式,但数据驱动通常在其他数据支持体系建立并完善后才进行考虑。
第一,数据驱动需要成熟的数据方法论的支持,这些知识需要通过日常报表、专项挖掘分析等方式慢慢积累,即使外部引入的方法论也需要根据企业环境进行“定制开发”。
第二,数据驱动需要企业内部具有需求环境。数据需要的前期以辅助决策类为主,第一步是“看”数据的需求,即数据报表;第二步是“查”数据的需求,即通过专项挖掘输出数据价值;第三步才是“用”数据的需求,即让数据自己决定业务方向。没有前两步做铺垫,第三步无法实现。
第三,数据驱动需要较大的IT、人力、物力和财力投入,在数据工作前期,尤其在没有见到数据价值产出之前,企业盲目投入的风险性大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16