京公网安备 11010802034615号
经营许可证编号:京B2-20210330
回到本系列的第一篇文章机器学习从入门到放弃之KNN算法,在里面有这样的一个问题

黄点代表1类电影的分布,绿色代表0类电影的分布,紫色代表需要分类的电影样本。
那么该怎么判别紫色的那颗点所在的类别呢?
之前给出的是KNN算法,通过计算紫色点都周边的剧场的长短,来判断紫色点属于哪个类别。现在有这样一种极端情况,黄点和绿点在紫点周围呈圆周分布,距离一样,咋办?
图画得不是太好,大家理会我的意思就行。
在这种情况,假如像下图这样的情况,就容易处理得多了。
红线的下方是黄色种类,上方时绿色种类。
这种情况我们称之为线性分类,关于如何拟合出这条线程函数下面会讲述。现在先来说说,既然这叫线性分类,那么必然会有非线性的情况啊,那咋办呢?
没错,如果特征可以被线性函数全部表达,这自然是理想情况,但实际问题中更多的非线性分类。
这时,我们需要将线性函数转换为非线性函数。那怎么转换呢,很简单,将线性函数(假设叫z),扔到某一非线性函数f(x)内,得到新的表达式y = f(z),就是我们所需的非线性分类器了,而f(x)也就作激活函数,它有很多种,本文只介绍逻辑回归所使用到的sigmoid函数,其表达式是
其图像有一个漂亮的S型
可见在x的取值范围足够大的时候,其从0变1的过程可以忽略不计,因此,我们习惯的把>0.5归为1类,<0.5归为0类,那么恰好是0.5怎么办?这个概率是极低的,如果真的是0.5,那就随机归类,然后出门买张彩票吧,说不定就不用继续当程序员了。 (/≥▽≤/)
回到表达式上,可知函数的变量是z其余都是常量,所要要求解该分类函数的值,就是要确定z的值而z是线性方程,基本的数学知识不难知道,
$$z=a1x1+a2x2……an*xn$$
其中[x1……xn]是输入向量,所以训练的过程就是确定于[a1,a2……an]的值,使得该表达式对于多个输入向量的输出值正确率最高。
下面开始讲述求最佳的[a1,a2……an]的方法
显然,我们可以设计一个函数来衡量[a1,a2……an]是否最佳,比如说这样的
显然当J(a)达到最小值时,a的值最佳。方法如下,
初始化weight,可以使用随机值
代入式子得到err = y – predict
weight = weight + alpha * error * x_train[i],其中alpha称为学习速率,太小会影响函数的收敛速度,太大刚才就不收敛了。
为了解决上述问题,在《机器学习实战中》使用了动态更新alpha的方法,式子为alpha = 4/(1+i)+0.01
上述修改weight的过程称为梯度下降法,其中我故意略去了数学证明部分,需要的同学请自行查找专业资料。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06