
CDA数据分析师认证考试(第五届)将于2016年12月24-25日进行,届时考试共有两个等级,三个认证。较上一届,第五届考试新增“重庆考区”,考试大纲方面主要在二级建模部分进行了调整更新。
官方考纲下载:
考试报名通道:点击报名
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
考生进入报名程序之前,必须认真阅读以下说明:
一、考试信息
Level Ⅰ+Ⅱ:中国内地30+省市,70+城市,250+考场。考生可选择就近考场预约考试。
Level Ⅲ:中国内地30所城市,北京/上海/天津/重庆/成都/深圳/广州/济南/南京/杭州/苏州/福州/太原/武汉/长沙/西安/贵阳/郑州/南宁/昆明/乌鲁木齐/沈阳/哈尔滨/合肥/石家庄/呼和浩特/南昌/长春/大连/兰州。
2、考试科目及报考资格
Level Ⅰ:随报随考,考生报名成功后,可在一年内自行选择时间,预约就近考试中心进行考试。
Level Ⅱ:随报随考,考生报名成功后,可在一年内自行选择时间,预约就近考试中心进行考试。
Level Ⅲ:一年四届(3、6、9、12月的最后一个周六),每届考前一个月截止该届报名。
3、报名开通时间及缴费方式
1) 报名及日期:2016年7月18日开始起至2016年12月2日结束
2) 资质审核及缴费日期:2016年7月18日开始起至2016年12月2日结束
3) 报名流程:
注册—登录—选科—缴费—审核—报名成功
3个工作日后登录报名网站查看资质审核结果,未通过按照提示修改报考信息再次提交 。
审核不通过原款返还(银行手续费1%由考生自行承担)。
4、考试时间:
Level Ⅰ:随报随考,考生报名成功后,可在一年内自行选择时间,预约就近考试中心进行考试。
Level Ⅱ:随报随考,考生报名成功后,可在一年内自行选择时间,预约就近考试中心进行考试。
Level Ⅲ:一年四届(3、6、9、12月的最后一个周六),每届考前一个月截止该届报名。
5、准考证打印:
不需要准考证,带身份证考试就行。
6、考试方式:
计算机闭卷考试,考生通过计算机进行答题。
7、考试题型:
LEVEL Ⅰ
单项选择题、多项选择题
LEVEL Ⅱ
单项选择题、多项选择题
LEVEL III 大数据分析师
单项选择题、多项选择题
8、考试成绩
考试结束后7个工作日后公布登录报名网站查询考试成绩
9、证书申请
证书将在考试后30个工作日办理完成,邮寄到考生所填写的地址。
二、支付须知
1) 考试费用:
LEVEL Ⅰ:1200元
LEVEL Ⅱ:1700元
LEVEL III :2000元
报考提供:《考试大纲》、模拟题库 》点击查看《
三、信息修改
1) 考生可在报名截止日之前登陆报考网站,对考生档案信息(包括考生姓名、性别、证件信息、出生日期和所在地)、所选考试地点及报考科目进行修改和删除。
2) 科目删除后需要重新报考并提供证件信息,完成缴费,待审核通过完成报名。
四、准考证信息
不需要准考证,带身份证考试就行。
五、退费流程
考生申请退费流程:
登录考试报名网站—>客服电话确认信息,申请退费—>等待退款
成功报考并缴费的考生,可在考试报名结束前一个月(11月2日)申请退费,11月2日之后,其报名费不予退还。费用将在考试结束后统一退还至原付款时使用的银行卡,退款手续费由考生自行承担。
六、免责条款
1、填报个人信息应仔细核对后提交,确保真实有效,因本人填报信息有误导致的相关后果由考生自行负责。
2、考生报考期间,应及时登录报名网站查询最新情况,因本人原因错过重要信息而影响考试的,后果由考生自负。
七、考生服务热线
如有问题,请拨打CDA客服热线:010-68454276,邮箱:exam@cda.cn。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15