京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师:避免低质量数据的5个方法
数据科学家的最怕的是低质量的数据。因为哪怕你发明出世界上最聪明的算法,这些算法碰到低质量数据便毫无用处。正如我们常说的,“垃圾数据入,垃圾数据出”。
我最近在为一个大型的石油天然气公司工作。为 提升炼油厂的安全性,我协助他们采用一个更加基于风险的检验策略。为了能够最好地运用这种策略,我们需要把风险完全量化。我们想使用历史检验数据来确定需 要更多关注的高风险区域。但是因为人们对于现有的历史数据并没有信心,这个方法便行不通。这是一个数据从业者经常面对的挑战。为了让你的数据科学良好地运 作,你需要有一些避免低质量数据的方法。
1.清洁数据源
一个清洁的数据源是非常重要的。一个本来就相对干净的房子,清理起来会比较轻松。数据清理也是一个道理。
在石油天然气客户那里,我发现了许多数据采集 的问题。比如说,在数据库中,你可能发现2015年管道厚度的读数比2012年的读数大。虽然我不是一个物理学家,但是我相当肯定管道厚度不会随着时间而 增长。当初当我们看到一个如此可疑的数据,我们并没有从根本上做出一个原因的分析。但是这的确是值得详细调查的。这就是我所说的从源头清理数据。相对于其 他的数据清理方法,我偏爱清洁数据源这种方法。因为它的清洁效果是任何其他方法的10倍。
2.建立标准答案
在你能够认定什么是高质量数据前,你必须知道高数据质量是什么样子。虽然在一些案例中,这是不可能的。譬如说在管道测量这个例子中,就不可能确切知道三年之后管会道薄多少。这也正是你测量它的原因。但在一些案例中,你可以知道高质量的数据是什么样子的。
你最好有一个标准答案。特别当你在用统计学的方法确定数据质量时候,一个简单的单一样本T检验,就可以告诉你数据的质量如何。
当你在利用公司Email服务器进行员工情绪的数据挖掘时,你的算法应该排除所有进入服务器的垃圾邮件。在这种情况下,垃圾邮件十分明显,所以你也能够很明显地看出哪些是非垃圾邮件,而这就是标准答案的作用。
3.谨记完整性规则
完整性规则是清理数据的必须条件
我曾经在一间大型的技术公司工作,公司主要业 务是构建政府交易的客户注册表。这些客户注册表是4到5个数据源的客户主数据。为集成每一个数据源,我们会见了产品的拥有者,询问了他们关于数据的 ACD(增加、修改、删除)属性情况。然后,我们在它们的数据表中建立ACD审计日志去观察实际上发生了什么事情 。结果,在几乎所有的案例中,总有一些不应该删除的数据从表中被删除,并且总有数据被插入到本应是静态的表中。
考虑数据没有损坏时,你的数据中运用的逻辑法则,然后建立审计脚本,在有违背规则情况发生的时候,你可以得到及时的通知。例如,如果有一个外键指向一个不存在的主键,你就可以及时发现这个问题。
4.采用专家系统
如果不涉及定量的风险评策略不能让石油天然气 的客户满意,我们会和专家们商量,看我们是否可以重复他们在分析数据前进行数据清洗的过程。这是一个专家系统,它是一个基于规则的复制,复制一个人类专家 如何去介定好的数据质量。一个专家系统可以良好地运作,只要如下条件:1)你有真正的专家(提示:检查他们的结果并且忽略他们的职位)。2)他们可以清楚 地解释他们所做的一切。3)他们所做的可以转换为明确的规则。
理论都是背后内容的简化,所以需要小心,你的专家可能很难向你解释他们所做的事。正如同向一个小学生解释如何开车,并不是那么容易的事。
5.在你的兵工厂中加上机器学习能力这个工具
使用机器学习能力去清理你将会用作机器学习的 数据,听起来有点绕。但它确实可行。你要设立两种系统:一个用于清理,而另一个用于分析。你需要确保它们的解决方案空间独立,因为这是两个不相同的问题。 教会计算机学习清洁数据是什么样的,这个方法是完全可行的,特别是当你有标准答案的时候。
只依靠计算机,利用它的机器学习能力去清洗输 入数据并不能让我安心。因为哪怕是在机器学习能力如此发达的今天,你都永远不能完全了解清洗算法究竟能在多大程度上发挥作用。就好像亚马逊的机器,它的确 很好,但它推荐给我的电影却不合我心意。然而,即使如此,在你的兵工厂中储存上这种工具依旧是有利无害的。
小结:
我讲述了五个方法用来确保你不会因为垃圾数据破坏你的数据科学努力。一些战术可以马上使用,一些需要时间去开发。
你应该认真对待只输入高质量的数据到你的数据算法这一原则。否则,你很快会看到你的数据科学团队将被质量问题所困扰。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16