
如何在SPSS中做数据正态转化
数据不完全符合正态分布,接下来的问题是,很多学科都在讲大样本不用太考虑正态分布问题,但事实上由此造成的误差确实存在,有时还会比较大。那么如何用SPSS做数据正态化转换呢?
严格说来,解决这个问题需要讲四个方面:
什么是正态转换?
为什么做正态转换?
何时做正态转化?
如何做正态转化?
我担心如果只讲How(如何做),也许有些初学者不分场合,误用滥用。但是,我同样担心如果从ABC讲起,难免过分啰嗦,甚至有藐视大家的智商之嫌。所幸现在是互联网时代,有关上述What, Why, When问题的答案网上唾手可得。如果对这些问题不甚了了的读者,强烈建议先到google上用“How to transform data to normal distribution"搜一下(或点击下面的“前10条”),前10条几乎每篇都是必读的经典。
有了上述交代,我们可以比较放心地来讨论如何做正态转换的问题了。具体来说,涉及以下几步:
第一步
查看原始变量的分布形状及其描述参数(Skewness和Kurtosis)。这可以用频率或者描述性统计或者BoxPlot;
第二步
根据变量的分布形状,决定是否做转换。这里,主要是看一下两个问题:
1、左右是否对称
也就是看Skewness(偏差度)的取值。如果Skewness为0,则是完全对称(但罕见);如果Skewness为正值,则说明该变量的分布为positively skewed(正偏态,见下图1b);如果Skewness为负值,则说明该变量的分布为negatively skewed(负偏态,见图 1a)。然而,肉眼直观检查,往往无法判断偏态的分布是否与对称的正态分布有“显著”差别,所以需要做显著性检验。如同其它统计显著性检验一样,Skewness的绝对值如大于其标准误差的1.96倍,就被认为是与正态分布有显著差别。如果检验结果显著,我们也许(注意这里我用的是“也许”一词)可以通过转换来达到或接近对称。见注解1的说明。
2、峰态是否陡缓适度
也就是看Kurtosis(峰态)是否过分peaked(陡峭)或过分flat(平坦)。如果Kurtosis为0,则说明该变量分布的峰态正合适,不胖也不瘦(但罕见);如果Kurtosis为正值,则说明该变量的分布峰态太陡峭(瘦高个,见图2b);反之,如果Kurtosis为负值,该变量的分布峰态太平缓(矮胖子,见图2a)。峰态是否适度,更难直观看出,也需要通过显著检验。如同Skewness一样,Kurtosis的绝对值如果大于其标准误差的1.96倍,就被认为与正态分布有显著差别。这时,我们也许可以通过转换来达到或接近正态分布(峰态)。
第三步
如果需要做正态化转换,还是根据变量的分布形状,确定相应的转换公式。最常见的情况是正偏态加上陡峰态。
1、如果是中度偏态
如Skewness为其标准误差的2-3倍,可以考虑取根号值来转换,以下是SPSS的指令(其中"nx"是原始变量x的转换值,参见注2):
COMPUTE nx=SQRT(x)
2、如果高度偏态
如Skewness为其标准误差的3倍以上,则可以取对数,其中又可分为自然对数和以10为基数的对数。以下是转换自然对数的指令(注2):
COMPUTE nx=LN(x)
以下是转换成以10为基数的对数(其纠偏力度最强,有时会矫枉过正,将正偏态转换成负偏态,注2):
COMPUTE nx=LG10(x)
上述公式只能减轻或消除变量的正偏态(positive skewed),但如果不分青红皂白(即不仔细操作第一和第二步)地用于负偏态(negative skewed)的变量,则会使负偏态变得更加严重。如果第一步显示了负偏态的分布,则需要先对原始变量做reflection(反向转换),即将所有的值反过来,如将最大值变成最小值、最小值变成最大值、等等。如果一个变量的取值不多,可用如下指令来反转:
RECODE x(1=7)(2=6)(3=5)(5=3)(6=2)(7=1)
如果变量的取值很多或有小数、分数,上述方法几乎不可能,则需要写如下的指令(不知大家现在是否信服了为什么要学syntax吗?):
COMPUTE nx=max-x+1, 其中max是x的最大值。
第四步
回到第一步,再次检验转换后变量的分布形状。如果没有解决问题,或者甚至恶化(如上述的从正偏态转成负偏态),需要再从第二或第三步重新做起,然后再回到第一步的检验,等等,直至达到比较令人满意的结果(见注3)。
数据正态化的特别注解
1、如同其它统计检验量一样,Skewness和Kurtosis的的标准误差也与样本量直接有关。具体说来,Skewness的标准误差约等于6除以n后的开方(根号喜下6/n),而Kurtosis的标准误差约等于24除以n后的开方(根号下24/n),其中n均为样本量。由此可见,样本量越大,标准误差越小,因此同样大小的Skewness和Kurtosis在大样本中越可能与正态分布有显著差别。这也许就是SW在问题中提到的“很多学科都在讲大样本不用太考虑正态分布问题”的由来。我的看法是,如果小样本的Skewness和Kurtosis是显著的话,一定要转换;在大样本的条件下,如果Skewness和Kurtosis是轻度偏差,也许不需要转换,但如果严重偏差,也是要转换。
2、大家知道,根号里的x不能为负数,对数或倒数里的x不能为非正数(即等于或小于0)。如果你的x中有是负数或非正数,需要将其做线性转换成非负数(即等于或大于0)或正数(大于0),如 COMPUTE nx = SQRT (x - min) 或 COMPUTE nx = LN (x - min + 1),其中的min是x的最小值(为一个非正数)。
3、不是任何分布形态的变量都可以转换的。例外之一是“双峰”或“多峰”分布(distribution with dual or multiple modality),没有任何公式可以将之转换成单峰的正态分布。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10