
seaborn是一款基于matplotlib的图形可视化python库,它提供了一种高度交互式界面,便于用户能够做出各种有吸引力的统计图表。seaborn主要是针对统计绘图的,一般来说,seaborn能满足数据分析90%的绘图需求,它最大的特点是简单。小编今天给大家分享的就是关于如何使用seaborn绘图的内容,希望对大家有所帮助。
一、常用参数
二、seaborn-数据集分布可视化
1.单变量分布
# 正态分布的500个数据 x1 = np.random.normal(size=500) # 分布图,默认是直方+线型 sns.distplot(x1);
# 均匀分布的500个整数数据 x2 = np.random.randint(0, 100, 500) # 分布图,默认是直方+线型 sns.distplot(x2);
# 分布图,bin是直方的个数,kde是线型(false表示去掉线型),rug显示每个数据的分布(下面深蓝色的部分) sns.distplot(x1, bins=20, kde=False, rug=True)
# 核密度估计,hist表示直方(false表示不要直方)sns.distplot(x2, hist=False, rug=True)
# 核密度函数也可以表示成如下,shade表示阴影 sns.kdeplot(x2, shade=True) sns.rugplot(x2)
# 拟合参数分布 sns.distplot(x1, kde=False, fit=stats.gamma)
2.双变量分布
# 双变量分布 df_obj1 = pd.DataFrame({"x": np.random.randn(500), "y": np.random.randn(500)}) df_obj2 = pd.DataFrame({"x": np.random.randn(500), "y": np.random.randint(0, 100, 500)}) # print df_obj1 # print df_obj2
# 散布图 sns.jointplot(x="x", y="y", data=df_obj2)
# 二维直方图 sns.jointplot(x="x", y="y", data=df_obj2, kind="hex");
# 核密度估计 sns.jointplot(x="x", y="y", data=df_obj1, kind="kde");
3.数据集中变量间关系可视化
# 数据集中变量间关系可视化 dataset = sns.load_dataset("tips") #dataset = sns.load_dataset("iris") sns.pairplot(dataset);
以上就是小编今天跟大家分享的关于seaborn绘图的一些内容,希望对于大家seaborn的学习和使用有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20