京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在现代数据驱动的世界中,数据清洗是一个至关重要的步骤。通过清理、转换和整理原始数据,我们可以确保数据的质量和一致性,从而提高后续分析和建模的准确性。Python作为一种功能强大且易于使用的编程语言,在数据清洗方面提供了广泛的工具和库。本文将带您了解Python在数据清洗中的应用,并提供实践指南。
第一部分: 数据清洗概述
第二部分: Python中的数据清洗工具和库
第三部分: 数据清洗的常见任务和示例代码
import pandas as pd
# 读取数据集
data = pd.read_csv('data.csv')
# 检测缺失值
missing_values = data.isnull().sum()
# 填充缺失值
data['column_name'].fillna(value, inplace=True)
import pandas as pd
# 读取数据集
data = pd.read_csv('data.csv')
# 删除重复值
data.drop_duplicates(inplace=True)
import pandas as pd
import numpy as np
# 读取数据集
data = pd.read_csv('data.csv')
# 定义异常值的范围
lower_bound = data['column_name'].mean() - 3 * data['column_name'].std()
upper_bound = data['column_name'].mean() + 3 * data['column_name'].std()
# 替换异常值
data['column_name'] = np.where((data['column_name'] < lower class="hljs-string">'column_name'] > upper_bound), np.nan, data['column_name'])
import re
# 格式错误的字符串
text = '2023-09-04'
# 提取日期部分
date = re.search(r'd{4}-d{2}-d{2}', text).group()
数据清洗是数据分析和建模过程中不可或缺的环节。本文介绍了Python在数据清洗中的应用,并提供了常见任务的示例代码。通过使用Python的强大工具和库,您可以轻松地处理缺失值、重复值、异常值和格式错误,提高数据质量和准确性。希望本文能够为您提供有关数据清
洗的基础知识和实践指南。通过深入了解Python中的数据清洗工具和库,您可以更好地处理各种数据质量问题。
然而,数据清洗的过程是多样化的,每个项目都可能面临不同的挑战。以下是一些常见的数据清洗任务和对应的示例代码,供您参考:
import pandas as pd
# 读取数据集
data = pd.read_csv('data.csv')
# 转换列的数据类型
data['column_name'] = data['column_name'].astype('int')
import pandas as pd
# 读取数据集
data = pd.read_csv('data.csv')
# 删除特殊字符
data['column_name'] = data['column_name'].str.replace('[^ws]', '')
# 转换为小写
data['column_name'] = data['column_name'].str.lower()
import pandas as pd
# 读取数据集
data = pd.read_csv('data.csv')
# 转换为日期格式
data['date_column'] = pd.to_datetime(data['date_column'])
# 提取年份
data['year'] = data['date_column'].dt.year
import pandas as pd
# 读取数据集
data = pd.read_csv('data.csv')
# 数据透视表
pivot_table = data.pivot_table(values='value', index='index_column', columns='column_name', aggfunc='mean')
import pandas as pd
# 读取数据集
data = pd.read_csv('data.csv')
# 使用均值填充缺失值
data['column_name'].fillna(data['column_name'].mean(), inplace=True)
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
# 读取数据集
data = pd.read_csv('data.csv')
# 使用最小-最大缩放将数据归一化
scaler = MinMaxScaler()
scaled_data = scaler.fit_transform(data)
通过Python进行数据清洗是一项强大而灵活的任务,可以帮助您准备和处理数据以支持进一步的分析和建模。本文提供了Python在数据清洗中常用的工具和库,并给出了一些常见的数据清洗任务和相应的示例代码。然而,数据清洗的过程因项目而异,需要根据具体情况采取适当的方法和技术。不断学习和实践数据清洗的技能将使您能够更好地利用数据资源并获得准确可靠的分析结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16