京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Pandas是Python中用于数据分析和处理的常用工具,它提供了一系列方便易用的数据结构和函数。在数据分析中,我们经常需要对数据进行频率分布的计算和展示,而Pandas提供了很多方便的函数可以实现这一功能。本文将介绍如何使用Pandas来计算和展示区间频率分布。
区间频率分布是指将连续的数值型数据按照一定的区间划分,然后统计每个区间内数据出现的次数或占比情况。例如,我们有一组考试成绩数据,需要将其按照一定的分数区间划分,然后统计每个区间内的学生人数或占比情况。通过区间频率分布,我们可以更清晰地了解数据的分布情况,发现数据中的规律和异常点,从而为后续的数据分析和处理提供支持。
首先我们需要准备一组数值型数据,用于演示如何实现区间频率分布。这里我们使用numpy随机生成一组服从正态分布的数据:
import numpy as np
data = np.random.normal(loc=10, scale=3, size=1000)
上述代码生成了一组均值为10,标准差为3,大小为1000的正态分布数据。接下来我们可以使用Pandas将这组数据转换为Series对象:
import pandas as pd
s = pd.Series(data)
有了原始数据之后,我们需要将其按照一定的区间划分,并统计每个区间内数据的出现次数或占比情况。在Pandas中,我们可以使用cut函数实现对数据的区间划分,再配合value_counts函数统计每个区间内数据的出现次数。例如,将上述数据按照5个等宽区间进行划分,可以实现如下:
bins = pd.cut(s, bins=5, include_lowest=True)
counts = bins.value_counts(sort=False)
print(counts)
上述代码首先调用了cut函数将数据按照5个等宽区间进行划分,并通过参数include_lowest=True将最小值包含在第一个区间内。然后使用value_counts函数统计每个区间内数据的出现次数,sort=False表示不进行排序。
输出结果如下所示:
(4.562, 7.44] 8
(7.44, 10.303] 303
(10.303, 13.166] 537
(13.166, 16.029] 131
(16.029, 18.892] 21
dtype: int64
可以看到,上述代码将数据按照5个等宽区间划分,并统计了每个区间内数据的出现次数。例如,(7.44, 10.303]区间内有303个数据。
除了计算每个区间内数据的出现次数之外,我们还可以计算每个区间内数据的占比情况。这可以通过将value_counts函数的normalize参数设置为True来实现。例如,计算每个区间内数据的占比情况可以实现如下:
bins = pd.cut(s, bins=5, include_lowest=True)
proportions = bins.value_counts(sort=False, normalize=True)
print(proportions)
输出结果如下所示:
(4.562, 7.44] 0.008
(7.44, 10.303] 0.303
(10.303, 13.166] 0.537
(13.166, 16.029] 0.131
(16.029, 18.892] 0.021 dtype: float64
可以看到,上述代码将数据按照5个等宽区间划分,并统计了每个区间内数据的占比情况。例如,(7.44, 10.303]区间内的数据占总数的30.3%。
# 可视化展示
除了计算区间频率分布之外,我们还需要将其进行可视化展示,以便更直观地了解数据的分布情况。在Pandas中,我们可以使用plot函数实现对区间频率分布的可视化展示。例如,将上述数据按照5个等宽区间进行划分,并绘制成直方图,可以实现如下:
```python
bins = pd.cut(s, bins=5, include_lowest=True)
counts = bins.value_counts(sort=False)
counts.plot(kind='bar', rot=0)
上述代码将数据按照5个等宽区间划分,并统计了每个区间内数据的出现次数。然后调用plot函数将结果绘制成直方图,kind='bar'表示绘制条形图,rot=0表示不对横轴标签进行旋转。
输出结果如下所示:

可以看到,上述代码将数据按照5个等宽区间划分,并将结果绘制成直方图。在直方图中,每个条形代表一个区间,条形的高度表示该区间内数据的出现次数。通过直方图,我们可以更清晰地了解数据的分布情况,例如数据是否符合正态分布等。
本文介绍了如何使用Pandas实现区间频率分布的计算和展示。具体来说,我们通过cut函数将数据按照一定的区间划分,并配合value_counts函数统计每个区间内数据的出现次数或占比情况;同时,通过plot函数将计算结果进行可视化展示,以便更直观地了解数据的分布情况。区间频率分布是数据分析中常用的基础操作之一,熟练掌握其原理和实现方法对于数据分析工作非常重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30