
Pandas是Python中用于数据分析和处理的常用工具,它提供了一系列方便易用的数据结构和函数。在数据分析中,我们经常需要对数据进行频率分布的计算和展示,而Pandas提供了很多方便的函数可以实现这一功能。本文将介绍如何使用Pandas来计算和展示区间频率分布。
区间频率分布是指将连续的数值型数据按照一定的区间划分,然后统计每个区间内数据出现的次数或占比情况。例如,我们有一组考试成绩数据,需要将其按照一定的分数区间划分,然后统计每个区间内的学生人数或占比情况。通过区间频率分布,我们可以更清晰地了解数据的分布情况,发现数据中的规律和异常点,从而为后续的数据分析和处理提供支持。
首先我们需要准备一组数值型数据,用于演示如何实现区间频率分布。这里我们使用numpy随机生成一组服从正态分布的数据:
import numpy as np
data = np.random.normal(loc=10, scale=3, size=1000)
上述代码生成了一组均值为10,标准差为3,大小为1000的正态分布数据。接下来我们可以使用Pandas将这组数据转换为Series对象:
import pandas as pd
s = pd.Series(data)
有了原始数据之后,我们需要将其按照一定的区间划分,并统计每个区间内数据的出现次数或占比情况。在Pandas中,我们可以使用cut函数实现对数据的区间划分,再配合value_counts函数统计每个区间内数据的出现次数。例如,将上述数据按照5个等宽区间进行划分,可以实现如下:
bins = pd.cut(s, bins=5, include_lowest=True)
counts = bins.value_counts(sort=False)
print(counts)
上述代码首先调用了cut函数将数据按照5个等宽区间进行划分,并通过参数include_lowest=True将最小值包含在第一个区间内。然后使用value_counts函数统计每个区间内数据的出现次数,sort=False表示不进行排序。
输出结果如下所示:
(4.562, 7.44] 8
(7.44, 10.303] 303
(10.303, 13.166] 537
(13.166, 16.029] 131
(16.029, 18.892] 21
dtype: int64
可以看到,上述代码将数据按照5个等宽区间划分,并统计了每个区间内数据的出现次数。例如,(7.44, 10.303]区间内有303个数据。
除了计算每个区间内数据的出现次数之外,我们还可以计算每个区间内数据的占比情况。这可以通过将value_counts函数的normalize参数设置为True来实现。例如,计算每个区间内数据的占比情况可以实现如下:
bins = pd.cut(s, bins=5, include_lowest=True)
proportions = bins.value_counts(sort=False, normalize=True)
print(proportions)
输出结果如下所示:
(4.562, 7.44] 0.008
(7.44, 10.303] 0.303
(10.303, 13.166] 0.537
(13.166, 16.029] 0.131
(16.029, 18.892] 0
.021 dtype: float64
可以看到,上述代码将数据按照5个等宽区间划分,并统计了每个区间内数据的占比情况。例如,(7.44, 10.303]区间内的数据占总数的30.3%。
# 可视化展示
除了计算区间频率分布之外,我们还需要将其进行可视化展示,以便更直观地了解数据的分布情况。在Pandas中,我们可以使用plot函数实现对区间频率分布的可视化展示。例如,将上述数据按照5个等宽区间进行划分,并绘制成直方图,可以实现如下:
```python
bins = pd.cut(s, bins=5, include_lowest=True)
counts = bins.value_counts(sort=False)
counts.plot(kind='bar', rot=0)
上述代码将数据按照5个等宽区间划分,并统计了每个区间内数据的出现次数。然后调用plot函数将结果绘制成直方图,kind='bar'表示绘制条形图,rot=0表示不对横轴标签进行旋转。
输出结果如下所示:
可以看到,上述代码将数据按照5个等宽区间划分,并将结果绘制成直方图。在直方图中,每个条形代表一个区间,条形的高度表示该区间内数据的出现次数。通过直方图,我们可以更清晰地了解数据的分布情况,例如数据是否符合正态分布等。
本文介绍了如何使用Pandas实现区间频率分布的计算和展示。具体来说,我们通过cut函数将数据按照一定的区间划分,并配合value_counts函数统计每个区间内数据的出现次数或占比情况;同时,通过plot函数将计算结果进行可视化展示,以便更直观地了解数据的分布情况。区间频率分布是数据分析中常用的基础操作之一,熟练掌握其原理和实现方法对于数据分析工作非常重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10