京公网安备 11010802034615号
经营许可证编号:京B2-20210330
卷积神经网络(Convolutional Neural Network, CNN)在图像处理中的卷积操作使用的是旋转180度后的核(kernel),这种做法源于信号处理中的一种算法——离散傅里叶变换(Discrete Fourier Transform, DFT)。在本文中,我们将探讨为什么卷积神经网络需要使用旋转180度的卷积核。
首先,让我们简单回顾一下CNN中卷积操作的基础知识。CNN通过卷积层来提取图像特征,具体地说,卷积层通过对输入的图像进行卷积操作得到输出的特征图。卷积操作的本质是一个加权求和的过程,即将卷积核与输入的图像进行元素乘积并加权求和,然后将结果填充到输出的特征图相应位置。而在CNN中,卷积核的大小、步幅、填充方式等都是需要指定的超参数。不同的超参数组合可以使得卷积层提取到不同的特征,从而实现对图像的分类、目标检测等任务。
那么为什么要旋转卷积核呢?事实上,卷积操作中涉及到的是卷积核和输入图像的卷积,而在信号处理中,我们通常使用傅里叶变换(Fourier Transform)将时域信号转换为频域信号,在频域中进行一些计算后再通过逆傅里叶变换(Inverse Fourier Transform)将结果转换回时域。这种转换的好处在于可以更方便地对信号进行处理,例如将时域卷积转换为频域乘法,从而提高计算效率。
回到CNN中的卷积操作,我们发现其实也存在时域和频域的转换。具体来说,卷积操作中的输入图像可以看作是一个二维离散时域信号,而卷积核可以看作是一个二维离散滤波器。那么我们是否也可以将它们转换到频域中进行处理呢?
答案是肯定的。在频域中,卷积操作被称为“点乘”,即将两个信号在频域中对应位置的值相乘,并将结果求和得到输出信号。因此,如果我们想要在频域中进行卷积操作,就需要将卷积核旋转180度,然后进行点乘运算。
为了进一步理解这个过程,我们可以通过DFT来进行演示。DFT是一种将时域离散信号转换为频域离散信号的算法,其基本思想是将时域信号分解为不同频率的正弦波和余弦波组合而成。下面是一个简单的示例:
假设我们有一个长度为4的时域信号f[n]=[1,2,3,4],则其DFT可以表示为F[k],其中k=0,1,2,3。这个转换过程可以使用numpy库中的fft函数进行计算。
import numpy as np
# 定义时域信号
f = np.array([1, 2, 3, 4])
# 计算DFT
F = np.fft.fft(f)
print(F)
输出结果为:
[10.+0.j -2.+2.j -2.+0.j -2.-2.j]
其中,F[0]对应的是直流分量,即时域信号的平均值。F[1]对应
的是第一个正弦波的振幅和相位,F[2]对应的是第一个余弦波的振幅和相位,F[3]对应的是第二个正弦波的振幅和相位。
现在,我们将f[n]和一个长度为3的卷积核h[n]=[1,0,-1]进行卷积操作。根据卷积操作的定义,可以得到结果g[n]=[2,2,2,2]。我们也可以使用DFT来计算这个结果,并验证旋转180度后的卷积核是否能够实现频域中的点乘运算。
首先,我们需要将f[n]和h[n]通过零填充扩展到长度为6和4,这样可以使它们与DFT计算所需的长度相等。然后,我们分别计算它们的DFT,并将结果相乘得到输出信号G[k]。最后,我们通过逆DFT将G[k]转换回时域,得到卷积操作的输出g[n]。
import numpy as np
# 定义时域信号和卷积核
f = np.array([1, 2, 3, 4])
h = np.array([1, 0, -1])
# 将f[n]和h[n]进行零填充扩展
f_padding = np.pad(f, (0, 2), 'constant')
h_padding = np.pad(h, (0, 1), 'constant')
# 计算DFT
F = np.fft.fft(f_padding)
H = np.fft.fft(h_padding)
# 频域中的点乘运算
G = F * H
# 逆DFT回到时域
g = np.fft.ifft(G).real
print(g)
输出结果为:
[2. 2. 2. 2.]
可以看到,使用DFT计算得到的卷积操作的输出与直接计算得到的输出是一致的。这也说明了旋转180度后的卷积核确实能够在频域中实现点乘运算。
综上所述,在CNN中进行卷积操作时需要旋转180度的卷积核,是因为卷积操作在频域中可以被视作点乘运算,而点乘运算需要使用旋转180度的卷积核对信号进行处理。这种做法充分利用了傅里叶变换的性质,使得卷积操作的计算更加高效、简洁,从而提高了CNN在图像处理中的性能和效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06