
在Python中,matplotlib是一个广泛使用的绘图库。它可以用于创建各种类型的图表,包括折线图、散点图、条形图等等。当我们需要将多个数据系列绘制在同一张图中时,往往需要给每个系列指定不同的颜色。下面我将介绍如何在matplotlib中为不同系列指定颜色。
在matplotlib中,我们可以使用颜色编码来指定线条或点的颜色。常用的颜色编码有以下几种:
我们可以通过在绘图函数中传入颜色编码的参数来指定线条或点的颜色。例如,下面的代码会将三个数据系列分别绘制成蓝色、绿色和红色的线条:
import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y1 = [1, 2, 3, 4, 5]
y2 = [1, 4, 9, 16, 25]
y3 = [5, 4, 3, 2, 1]
plt.plot(x, y1, 'b')
plt.plot(x, y2, 'g')
plt.plot(x, y3, 'r')
plt.show()
上面的代码中,我们通过在plot()函数中传入'b'、'g'和'r'参数来指定了每个数据系列的颜色。
除了使用颜色编码外,我们还可以使用十六进制颜色码来指定颜色。使用这种方法,我们可以得到更加精细的颜色控制,因为我们可以指定任何RGB颜色的组合。
要使用十六进制颜色码,我们需要在plot()函数中传递一个color参数,并将其设置为一个字符串,该字符串以'#'开头,后面跟着六个十六进制数字(每两个代表一个RGB颜色通道)。例如,下面的代码会将三个数据系列分别绘制成蓝色、浅绿色和深红色的线条:
import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y1 = [1, 2, 3, 4, 5]
y2 = [1, 4, 9, 16, 25]
y3 = [5, 4, 3, 2, 1]
plt.plot(x, y1, color='#0000ff')
plt.plot(x, y2, color='#00ff80')
plt.plot(x, y3, color='#800000')
plt.show()
上面的代码中,我们分别使用了'#0000ff'、'#00ff80'和'#800000'作为颜色参数,以分别为三个数据系列指定颜色。
如果我们需要为多个数据系列选择一组相关的颜色,我们可以使用Colormap。Colormap是matplotlib中的一个类,它将连续的数值映射到一组颜色中,并且支持多个预定义的颜色方案。
使用Colormap,我们可以为每个数据系列指定一个数值,然后使用Colormap将这些数值映射到一组颜色中。例如,下面的代码将使用Colormap为三个数据系列指定颜色:
import matplotlib.pyplot as plt import numpy as np
x = [1, 2, 3, 4, 5]
y1 = [1,
2, 3, 4, 5] y2 = [1, 4, 9, 16, 25] y3 = [5, 4, 3, 2, 1]
colors = np.linspace(0, 1, len([y1, y2, y3]))
cm = plt.cm.Spectral
plt.plot(x, y1, color=cm(colors[0])) plt.plot(x, y2, color=cm(colors[1])) plt.plot(x, y3, color=cm(colors[2]))
sm = plt.cm.ScalarMappable(cmap=cm, norm=plt.Normalize(vmin=0, vmax=len([y1, y2, y3])-1)) sm._A = [] plt.colorbar(sm)
plt.show()
上面的代码中,我们首先使用`np.linspace()`函数创建了一个序列,该序列的长度等于数据系列的数量。然后,我们使用`plt.cm.Spectral`颜色方案创建了一个Colormap对象,并将该对象存储在变量`cm`中。接下来,我们分别为每个数据系列指定了一个颜色,其中颜色是通过将对应位置的序列值映射到Colormap中得到的。最后,我们使用`plt.colorbar()`函数在图例中显示了颜色条。 ## 总结 在matplotlib中为不同数据系列指定颜色可以通过多种方式实现。我们可以使用颜色编码、十六进制颜色码或Colormap来指定颜色。使用Colormap时,我们可以为每个数据系列指定一个数值,并使用Colormap将这些数值映射到一组颜色中。无论选择哪种方法,都要确保为每个数据系列指定一个明显的颜色,以便轻松区分它们。
你是否渴望进一步提升数据可视化的能力,让数据展示更加专业、高效呢?现在,有一门绝佳的课程能满足你的需求 ——Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)。
学习入口:https://edu.cda.cn/goods/show/3842?targetId=6751&preview=0
这门课程完全免费,且学习有效期长期有效。由 CDA 数据分析研究院的张彦存老师精心打造,他拥有丰富的实战经验,能将复杂知识通俗易懂地传授给你。课程深入讲解 matplotlib、seaborn、pyecharts 三大主流 Python 可视化工具,带你从基础绘图到高级定制,还涵盖多元图表类型和各类展示场景。无论是数据分析新手想要入门,还是有基础的从业者希望提升技能,亦或是对数据可视化感兴趣的爱好者,都能从这门课程中收获满满。点击课程链接,开启你的数据可视化进阶之旅,让数据可视化成为你职场晋升和探索数据世界的有力武器!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10