
树形结构数据是一种常见的数据结构,它由节点和边组成,可以用来表示层次化的关系。在MySQL表中存储树形结构数据,可以使用多种方法,本文将简要介绍几种主要的方法。
我们可以使用以下表格来存储此树形结构:
dept_id | name | parent_id
--------|----------------------|----------
1 | 公司 | NULL
2 | 技术部 | 1
3 | 开发团队 | 2
4 | 测试团队 | 2
5 | 销售部 | 1
6 | 区域销售团队 | 5
7 | 在线销售团队 | 5
其中,dept_id 是节点的唯一标识符,name 是节点名称,parent_id 是父节点的 dept_id。如果一个节点没有父节点,则其 parent_id 值为 NULL。
优点:邻接列表模型是非常简单和直观的模型,易于理解和实现。 缺点:查询复杂度高,特别是递归查询。
dept_id | name | path
--------|----------------------|---------
1 | 公司 | 1
2 | 技术部 | 1/2
3 | 开发团队 | 1/2/3
4 | 测试团队 | 1/2/4
5 | 销售部 | 1/5
6 | 区域销售团队 | 1/5/6
7 | 在线销售团队 | 1/5/7
在此模型中,每个节点都有一个唯一标识符dept_id,名称name和path,该路径包含其所有祖先节点的dept_id,以斜杠分隔。例如,技术部门的路径为1/2,其祖先为公司(dept_id为1)。
优点:查询效率高,对于子节点查询,只需要使用LIKE操作符即可。 缺点:更新节点时,需要更新其后代节点的路径。
dept_id | name | lft | rgt
--------|----------------------|-----|-----
1 | 公司 | 1 | 14
2 | 技术部 | 2 | 7
3 | 开发团队 | 3 | 4
4 | 测试团队 | 5 | 6
5 | 销售部 | 8 | 13
6 | 区域销售团队 | 9 | 10
7 | 在线销售团队 | 11 | 12
在此模型中,
每个节点都有一个唯一标识符dept_id,名称name,以及左右值lft和rgt。左右值的定义是这样的:假设一个节点有子节点,则其左值是其第一个子节点的左值减1,右值是其最后一个子节点的右值加1。如果一个节点没有子节点,则其左值和右值相等。
优点:查询效率高,递归查询时不需要使用JOIN操作,只需要使用BETWEEN操作即可。 缺点:更新节点时,需要更新许多左右值。
dept_id | name | lft | rgt | depth
--------|---------------------|-----|-----|-------
1 | 公司 | 1 | 14 | 0
2 | 技术部 | 2 | 7 | 1
3 | 开发团队 | 3 | 4 | 2
4 | 测试团队 | 5 | 6 | 2
5 | 销售部 | 8 | 13 | 1
6 | 区域销售团队 | 9 | 10 | 2
7 | 在线销售团队 | 11 | 12 | 2
在此模型中,每个节点都有一个唯一标识符dept_id,名称name,以及左右值lft、右值rgt和深度depth。与嵌套集合模型相比,MPTT模型额外提供了深度值,便于快速计算节点的层次关系。
优点:查询效率高,递归查询时不需要使用JOIN操作,只需要使用BETWEEN操作即可。 缺点:更新节点时,需要更新许多左右值。
总结 以上是几种常见的存储树形结构数据的方法。每种方法都有其优点和缺点,具体应用需根据具体场景而定。对于较深的树形结构,MPTT和嵌套集合模型可能比邻接列表和路径枚举模型更适合。但是,在更新节点时,MPTT和嵌套集合模型需要更新大量的值,因此在频繁更新节点的情况下,邻接列表和路径枚举模型可能更好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08