不同人学习SPSS的正确姿势
根据我的长期观察,学习spss的人群分为如下这么几种:① 课程作业党;② 本科论文党; ③ 硕士论文党;④ 工作储备党; ⑤工作需求党
下面我来分析一下不同人的学习需求,以及学习策略。
【课程作业党】的需求无非是完成老师留的作业,这类任务一般来说比较简单,只考察spss的特定功能,所以只要去上课了,并且上课听了讲,也自己跟着老师或者教材做过练习,课后做作业应该是没有问题的。当然以上说法建立在这个老师有水平的基础上,不适用于那种照本宣科,老师自己本身都不大会用软件的情形。
前面分析了,这类需求一般是针对spss的特定功能,或者特定应用,比如让你做一个方差分析,做一个t检验,或者对一份问卷进行简单分析。我这里给你的解决办法也不是说让你赶紧做完,应付交差,我给的建议是在真正学习到知识的前提下,快速完成任务的做法。在你拿到作业之后,首先看一下,它需要用到哪些知识点,先把相关的知识背景和理论基础梳理一下,比如对于方差分析,你不需要懂得方差分析具体的公式和实现的算法,但是你需要知道方差分析的思想,知道怎么阅读方差分析的结果。因为在spss或者其它的一些统计分析软件中,计算过程不需要我们关心,但是我们应该明白如何阅读输出结果。具备了这种理论基础以后,就可以上网以关键字SPSS方差分析进行搜索,就能够搜索到相应的操作,按照网上教程给出的操作过程操作即可。这样你就快速完成了作业,也大概知道自己做了什么,不至于做完作业还迷迷糊糊的。由于现在大学涉及的知识面比较广,有的人可能并不是很在意对一些技能的掌握,可能只是想完成任务,但是又不想完成的太草率,那我提供的这种思路,是快速解决这类任务的一个办法,读者可自己进行举一反三。
【本科论文党】的需求通常来说,也比较简单,因为本科阶段的论文大多题目比较固定,研究方法和数据处理方法也都是大同小异,经常使用的统计分析方法也无外乎那几种参数和非参数方法。
所以在做本科论文的时候,首先应该弄明白这个项目的实验设计或者项目设计,然后确定数据处理方法,这个过程导师一般会给你讲清楚,然后你再针对性的了解相关方法即可。
【硕士论文党】的需求相对来说比较复杂,不过据我观察,硕士阶段需要使用spss的,多数是需要对问卷和量表进行分析,还有一小部分需要使用到一些高级统计分析和数据挖掘的算法。
这种情况要求对spss要有一个相对全面的掌握,因为这个时候,你应该使用什么方法来进行何种分析,通常不是特别确定,虽然仍然在一定的范围内选择,比如在问卷分析的那些常用方法里面选择用于分析问卷的方法。还有一个挑战就是,社会科学领域的很多问卷分析项目,分析结果很有可能和自己的研究假设不符,这是一个很值得探讨的问题,从分析的技术上讲,通常没有什么好的解决办法。我非常鄙视修改数据来让结果符合假设的做法。硕士论文的研究周期相对比较长,在最终写论文之前,你应该多阅读文献,进行足够的预调查和预研究,这样能在一定程度上避免随随便便就提出一个实验数据无法证明的假设。
【工作储备党】的需求是希望储备一些数据分析技能,以希望未来能够被优秀的雇主录用。
就目前市场需求而言,直接需求spss的公司不是特别多,但是如果熟练掌握spss,并且深入理解spss里面的一些模型,数据挖掘算法的概念和应用,也会很受欢迎,这也会帮助你学习Python等编程类数据分析工具。因为用Python和spss对同一批数据建立逻辑回归或者其它模型,它们的结果是一样的,需要具备的理论知识模型相关的知识也是一样的,不同在于Python能够轻松处理更大的数据集,而spss不能。而在利用spss掌握了模型概念和用法的基础上,学习用Python去实现这个模型其实是一件很容易的事情,在这个过程中,你也会非常的开心,因为你发现你可以处理大数据了。我一直认为对于普通人而言,如果直接通过编程去学习数据挖掘算法,和分析模型是很困难的事情,因为这里面包括了两个难度很高的任务数据挖掘算法和编程,很多人容易中途放弃。但是如果你把学习算法和编程这两个过程分开,先通过一些可视化的软件,比如spss去掌握算法和模型,在此基础上,再去学习编程,这会变得很容易,也会给你带来成就感,激励你不断前进。学习路上,学习路径和学习方法也很重要,这是战略的一种体现。
【工作需求党】的需求是为了解决项目中的某个特定问题,比如使用spss来验证算法,验证模型的可行性,或者做某个领域的调查分析报告。
通常来讲,工作岗位如果有这类需求,企业一般也已经招聘了相应的人才,公司内部可求助于这些同事的帮助来解决。如果因为公司拓展业务,或者开始数据化转型,新加入了分析的需求,需要员工掌握分析技能,因为员工本身对自己已有的业务很熟悉,公司转型或者业务拓展也有一定的过程,员工在公司转型期间或者业务拓展期间,可以集中学习课程,或者请有经验的老师进行培训,可快速增强员工们的spss分析技能,这个时候适当招聘新的会相关技能的人也可以,但是新人由于不熟悉公司业务,完全靠新人不如培训老员工有效。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28在当今快速发展的数据驱动世界中,数据专员的角色变得愈发重要。无论是在企业决策、市场分析还是产品开发中,数据专员都扮演着不 ...
2024-10-27