大数据如何助中国女足“脱胎换骨”_数据分析师
中国女足过去的体能只能支撑60分钟的比赛,现在世界杯三场小组赛每场都能拼到最后,没有队员出现抽筋等严重体能问题。另外,让人啧啧称奇的是,三场激战之后,现在中国队内竟然没有任何重大伤病号,所有球员都可以上场比赛。
中国队主教练郝伟对新华社记者透露:中国女足球员体能状况明显改善,必须要感谢大数据的有力支撑。他说:“我们队现在每天都做大量数据分析。我们每堂训练课达到的强度,全是通过科学的数据分析来确定!我们在世界杯备战期间,一直进行大数据监控,因此对每个训练项目都很清楚。大数据让训练量化、清晰化,为我们提供了非常有价值的参考。”
郝伟执教中国女足之后,体能训练的内容不再是过去那样单调地跑圈,而是像国外先进球队一样通过小场地的有球对抗训练进行,既练习了个人技术、战术配合,同时又提升了体能。中国队从4月下旬在北京开始集训一直到现在,小场地对抗几乎是每堂训练课的必练内容。每次训练在场边一定会有一个人静静地站着。和动来动去的教练、球员以及队医等保障人员不同,他一直关注眼前电脑屏幕上飞快变动的数据。
这些数据涉及球员跑动距离、加速跑、心率和脂肪消耗等,每秒都在变化。不时会有球员过来问他,“我跑了多少米了”,他马上就能给出准确到个位数的答案。
他是中国女足专门请来的体能和数据分析专家魏宏文,是北京体育大学运动康复系体能教研室的博士。他的出现标志着中国女足进入了系统大数据分析的时代。
魏宏文和中国足球渊源颇深,曾经先后在马元安、马良行、王海鸣、张海涛、裴恩才、高荣明、商瑞华和高洪波等国内知名教练团队内服务过。他崇尚德国体育科学,自己也像德国人一样严谨能干。来到加拿大之后,他每天都要分析大量数据,忙得不可开交。
他说:“我从早上起床一直要忙到晚上。早上要对球员进行尿检,测体重。训练课时我收集所有球员的跑动距离、心率、强度和运动量等数据,回到酒店就要赶快做分析,晚上要把数据交给教练组。然后我要再做一次球员的尿样分析,如有异常的第二天上午还要复查。每天还要通过分析数据为球员配备营养品。一天下来想想,属于自己的时间可能也就一个多小时吧。我们保障团队每个人都特别忙,大家都特别敬业。其实,我越忙就会提供越多的数据,郝伟等教练就更忙。郝伟是个具有新型足球理念的教练,特别重视数据,并且善于分析数据。这点相当了不起。”
魏宏文从国内带来一台尿样分析机,另外还从加拿大当地借了一台GPS分析机。每天他都要从这两台机器上提取宝贵的数据。“分析尿样的机器是我从北体大借来的。我们学校、系以及教研室的领导特别支持中国女足,因此特批我停课来中国队做技术支持。我们希望能像德国科隆体育学院支持德国队一样支持中国队。中国女足也是我的老家,从12年前的美国世界杯开始,我就为中国队服务了,”他说。
和以前不同的是,魏宏文现在多了一台GPS分析机。这是他第一次在国家队内使用这种大数据采集和分析的机器。这是中国队的宝贝。每次中国队训练,魏宏文都要给队员穿上带有传感器的特制背心,然后在场边支起信号收集仪,打开GPS分析机,所有球员的训练数据就源源不断地传进了分析机内,形成海量数据。据说大数据收集做得最好的德国男足国家队,10个球员用3个足球进行训练,10分钟就能产生700万个可供分析的数据点。
魏宏文没有透露中国队每场训练或比赛能采集到的数据量,只说:“很多很多!我们以前国家队的主教练也想获得球员训练和比赛中的数据,但苦于没有科技手段帮忙,当时我们都用目测等原始手段,很不严密。现在有了技术手段,就可以获取这些数据了。当然受制于科研工作条件所限,我们没法和德国队比。去年夏天,德国队数据团队来北京讲课,我去听过。看了他们的PPT,我发现他们做数据的人很多很多。”
记者在中国队训练现场发现,全队只有一小半球员穿着数据采集背心。一位没穿背心的球员告诉记者,中国队来到加拿大后没能拿到足量的背心,因此只能采集一小半球员的数据。
记者问一位中国队内负责人为什么不能拿到足量的背心。他透露,球队教练组为此非常着急,希望能给每个球员配备一件背心,但中国足协那边没法解决。因为购买这些装备要花费一百多万,属于政府采购,需要做年度预算,控制非常严格,不可能马上就能去买。所以中国队只能靠专业公司赞助或者租借,于是就很难拿到足够数量的装备。
中国女足的大数据采集和使用虽然还处于起步阶段,但已经给她们的比赛和训练带来了很大帮助。负责训练的助理教练常卫巍说:“数据就是我们的眼镜,让我们在训练中看得更清楚了,球员哪里不足我们就重点练哪里,直到数据显示没有问题。这样训练的目的性更强,训练质量也更高。”中国女足主教练郝伟认为,大数据不仅帮助球队改善体能,而且也能帮他确定球员状态和比赛具体战术等。他说:“毫无疑问,大数据对于我们保证球员身体状态和完成训练、比赛任务的帮助很大,起到了关键作用。”
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28在当今快速发展的数据驱动世界中,数据专员的角色变得愈发重要。无论是在企业决策、市场分析还是产品开发中,数据专员都扮演着不 ...
2024-10-27