数据分析:决定大数据成败的王道
企业的IT高管们已然开始意识到,如果没有强大的分析系统,大数据几乎没什么价值。而借助分析系统,他们可以处理这些数据,以便给企业的重要决策者(他们的老板)提供易于消化的信息。但在市场上仅有如此少的解决方案的前提下,这真的是说起来容易,做起来难。
近几年来,我一直在与大数据公司的高管们探讨如何解决他们所遇到的问题。一些有趣的问题仍然持续存在。很明显,我们仍然还处在对于某些问题的初步了解阶段,要充分了解并使用有效的方案来解决这些问题,我们可能仍然还有很长的路要走。
Facebook和谷歌等公司获取了大量的信息。他们普遍遭到侵犯隐私的控诉,尽管我们并不知道这些企业利用他们收集的数据信息可以计算出关于我们的什么信息内容。我们总是假设他们使用这些数据信息是对我们不利的,即使他们很可能尝试的是使用这些信息为我们的谋利益。
没有更好的保护您的数据的方案
历来,围绕着大型数据存储库的许多问题均涉及到如何管理他们。这主要是指确保那些需要访问这些数据的人员的范围权限:从管理报告到遵守一切管理的制度规范,以便让这些人员在需要访问这些数据时可以得到他们所需要的信息。这还意味着必须确保数据存储的安全。这在历史上已然成为了供应商们铁一般坚不可摧的服务准则。
上述这些历来管理数据的方法说明我们一直以来对待这些数据就像海盗的宝藏一样,只是努力寻找创造性的、廉价的方法来埋葬他们。但却没有拿出同样有创意的方案来及时分析、得到他们。
我们可以肯定的是,宝藏是确实存在的,但我们不知道其究竟在何处。甚至有些数据信息已经真的非常老了,其索引和存储往往是如此糟糕,以至于我们有时会认为如果我们当初没有将其存储着首要位置会不会更好些。
新兴的公共云资源承诺低成本的存储与未来高可能性的访问。任意数据信息宝藏资源均被一排排整齐的存储。唯一需要权衡的,当然就是,安全、管理和遵守合规性的问题。
随着数据的不断增长和企业IT预算压缩,上述这些因素的权衡似乎已经不成其为问题了。也就是说,直到犯罪分子找到获得并发布了这些数据,才会造成风险。我们的企业甚至有了风险经理的职位,但这一职位也慢慢随着金融市场的崩溃而日渐变得对于保护企业资产没有什么意义。
数据分析才是决定大数据的成败的王道
现在,我们意识到,最关键的并非大数据本身。相反,是数据和移动设备接入的分析与结果报告。企业高管们越来越多地发现,如果他们能够从他们收集的数据中得到真实的信息,他们可以做出更好的决策,避免痛苦的重复错误,并提升他们在企业乃至整个行业中的地位。
事实证明,知识就是力量。因此,今天的成功人士已然开始把重点放在更多地了解他们的客户、合作伙伴、员工和企业环境,而不再是他们的竞争对手。
新时代的企业执行人员使用工具进行更强大的数据同步。这保证了被分析的数据的准确度和及时性。他们提供移动客户端,可以在智能手机和平板电脑上显示结果。他们利用云服务,可以同时解决企业的成本和安全性的要求。
Hadoop已经成为最大的数据分析平台,供应商之间正在使用Hadoop,进行提供最好的工具的竞争。然而,随着供应商开始花更多的时间开发附属品,而不是优化整个解决方案;或选择合作伙伴时无意造成了瓶颈,这些优化可能功亏一篑。
明智地选择你企业的数据分析解决方案
最后,当我听到奥巴马总统连任的CIO分析得出结论,大数据本身的部分并不重要。为您的管理人员提供他们所需要的答案才是最重要的。
这可能听起来很简单,但它确实需要供应商必须满足下列条件:
· 具有您企业和行业方面的大量经验。
· 愿意承担整个解决方案。
· 在达到您企业的期望方面有良好的记录。
·具有公共和私有云资源的经验。
· 有能力处理传统的数据存储和实时数据流。
总之,这不是一个自己动手做的问题。您需要有经验、有信誉、有可靠性和值得信赖的供应商。只有少数供应商能满足上述这些标准。您需要进行明智的选择。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28在当今快速发展的数据驱动世界中,数据专员的角色变得愈发重要。无论是在企业决策、市场分析还是产品开发中,数据专员都扮演着不 ...
2024-10-27