克服大数据集群的挑战
数据存储曾经是大数据的最大挑战。由于云计算基础设施的进步,存储数据不再是关键问题。如今,数据科学家所面临的最大问题是数据收集。
集群化使得大数据分析更容易。然而,集群也给数据工程师带来了必须解决的问题。
什么是数据集群?
数据集群的概念可追溯到至少20年前。美国俄亥俄州立大学计算机科学和工程系教授Anil Kumar Jain博士在他的白皮书之一中对这一术语进行了很好的描述:
“集群是模式(观察,数据项或特征向量)到组(集群)的无监督分类。集群问题在许多领域和许多学科的研究人员那里都得到了解决;这反映了其广泛的吸引力和实用性,作为探索性数据分析的步骤之一。然而,集群的组合是一个困难的问题,不同社区的假设和背景差异使得有用的通用概念和方法的传递变得缓慢。“
换句话说,数据工程师使用集群来识别原始数据中的趋势和模式。他们需要将其分解成群集。
数据集群的主要挑战是什么?
自从大数据的概念诞生以来,集群一直是一个挑战。这个问题源于数据量和处理限制。拉巴特大学列出了大数据集群的首要关注点。
(1) 数量
大多数网络上存储的数据量呈指数级增长。随着数据量的增加,提取数据变得更加困难。备份数据也可能放大这些问题。
(2) 速度
数据生成的速度是数据科学家面临的另一个集群挑战。这个问题不仅限于网络上的数据量。当网络以前所未有的速度生成新数据时,他们将很难实时地提取它。
造成的问题是双重的:
新的模式将不断地从已知的数据集涌现。数据分析师可能认为他们很难从数据中得出准确的结论,而事实上,他们的分析更能代表他们所建模的问题。他们可能不知道什么时候分析他们现有的数据集,以及何时等待收集更多的数据。
如果数据的创建速度比提取的它速度快,那么当他们试图收集数据时,趋势可能会发生变化。
随着网络使用物联网(IoT)从更多的设备收集数据,他们能够以更快的速度收集数据,问题将会越来越严重。
(3) 品种
集群数据存储在许多不同的表单中,这使得很难进行精确的比较。有些数据以结构化格式存储,而其他数据集可能是完全非结构化的。
如何解决这些问题?
有各种各样的工具和策略可以简化抽取和分析集群数据的过程。
(1) K均值集群
K均值集群方法是一种基于分组的解决方案,需要网络将对象分配给一个集群。这消除了单个对象可能通过出现在多个数据集中而偏离分析的担心。
(2) 无监督分类算法
无监督分类算法是基于预定义参数合并非常大的数据集的数据挖掘工具。这是处理日益增长的数据量的一个很好的解决方案,特别是使用强大的Hadoop工具。
(3) COALA
COALA使用实例级约束来避免类似分组引起的问题。不需要满足100%的约束条件。
(4) 降低维度
每个数据有两个维度:
变量
实例
随着变量数量的增加,总数据量呈指数增长。可以通过使用降低维度策略(也就是所谓的降维变换)来缓解问题。
确定数据集群挑战的新解决方案
数据集群是解决存储大量结构化和非结构化数据所带来的许多问题的解决方案。然而,这不是一个可靠的解决方案,因为数据仍然需要尽可能快速准确地被访问和分析。幸运的是,有一些很好的工具和方法可以简化流程。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28在当今快速发展的数据驱动世界中,数据专员的角色变得愈发重要。无论是在企业决策、市场分析还是产品开发中,数据专员都扮演着不 ...
2024-10-27